The objectives of this project is to fabricate a series of photoresponsive halogen-bonded liquid-crystalline supramolecule materials and study their self-assembled microstructures. The supramolecularly self-assembled microstructures will be precisely controlled by ways of halogen-bonded self-organization, photoinduced alignment and rubbing-induced liquid crystal alignment. The formation of halogen bonds, liquid-crystalline ordering and supramolecular self-assembly of the fabricated materials will be investigated by structural analysis, thermal analysis, microscopic techniques, and other modern analytical methods to reveal the influence of the molecular structure of halogen-bond donors and acceptors, liquid-crystalline self-organization and photoinduced alignment on the formation of halogen bonds and the microstructural orientation. The photoresponsive behaviors of the obtained materials will be studied in detail, such as, the photoinduced phase transitions between ordered liquid crystal phases to disordered isotropic phases upon irradiation of unpolarized light, the photocontrolled alignment and the photoinduced change in birefringence under linearly polarized light, the formation of phase-type gratings upon irradiation of two coherent polarized light beams. Based on these results, the potential applications in optical information storage, adjustment and transfer will be investigated. Then the molecular interactions based on halogen bonds will be further studied from the viewpoint of applications in design of future materials, hierarchical organization and advanced functional materials. This project will lead to research works with significant impact in the international scientific community as well as creative research achievements with our own rights of intellectual property.
本项目旨在设计、合成和组装一系列具有光响应行为的卤键液晶超分子材料,通过自组装技术、光取向和液晶摩擦取向等方法来调控它们的微纳结构,利用结构分析、热分析、微纳米显微技术等多种现代分析测试技术系统地研究这些材料的卤键成因、液晶性与组装行为,揭示卤键供体与受体的分子结构、液晶自组装、光取向等之间的作用规律对卤键形成和微纳结构的影响。系统地研究这些超分子液晶的光响应行为,如它们在非偏振光辐照下的光致相变,在线性偏振光辐照下的光控取向与光诱导双折射的变化,在两束相光辐照下的光栅形成等。在此基础上,尝试研究上述卤键液晶超分子材料对于光学信号的存储、调制和传输的可能性,探索分子间卤键相互作用在未来材料的设计中以及高次序列的组装和先进功能材料方面的应用。通过本项目的实施,将做出一批在国际上具有重要影响的研究工作,并获得原创性的具有自主知识产权的研究成果。
超分子液晶材料同时具有液晶特性和超分子化学键可逆的特性,是目前液晶材料研究的热点课题之一。本项目设计、合成和组装一系列具有光响应行为的卤键液晶超分子材料,通过自组装技术、光取向和液晶摩擦取向等方法来调控它们的微纳结构,利用结构分析、热分析、微纳米显微技术等多种现代分析测试技术系统地研究这些材料的卤键成因、液晶性与组装行为,揭示卤键供体与受体的分子结构、液晶自组装、光取向等之间的作用规律对卤键形成和微纳结构的影响。系统地研究这些超分子液晶的光响应行为,如它们在非偏振光辐照下的光致相变,在线性偏振光辐照下的光控取向与光诱导双折射的变化,在两束相光辐照下的光栅形成等。在此基础上,研究上述卤键液晶超分子材料对于信息存储和材料微纳结构的动态调控,探索分子间卤键相互作用在未来材料的设计中以及高次序列的组装和先进功能材料方面的应用。通过本项目的实施,以通讯作者发表SCI索引论文20篇,其中影响因子大于10的论文4篇;影响因子大于5的论文10篇。取得一批具有自主知识产权的创新成果,授权国家发明专利2项。培养博士生3人,并广泛地开展国内和国际外合作,扩大在此领域的国际影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
结核性胸膜炎分子及生化免疫学诊断研究进展
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
基于卤键的分子组装体的设计与构筑
光响应液晶高分子新材料及其生物微流控芯片构筑
构筑基于共价修饰的多酸功能材料- - 超分子液晶材料和生物材料
基于线型光响应液晶高分子的动态体外血管模型构筑及应用