Steel Moment Resisting Frames (SMRFs) are an important sector of seismically designed steel buildings. Past earthquakes have shown that the damages in SMRFs primarily concentrated in beam-to-column connections. Although researchers and practitioners have developed a few types of improved beam-to-column connections after the 1994 Northridge Earthquake in the United States and the 1995 Kobe Earthquake in Japan, these connections fail to overcome some shortcomings. For example, local buckling of beam flange over the plastic hinge region can not be avoided as the connection deforms beyond a certain level, resulting in strength degradation in the connection. Moreover, which is more important, repair of the damaged connections can be costly or even impossible. Inspired by the recent research outcomes (including the reduced beam section connections, buckling restrained braces and the concept of structural fuse), this research team intends to develop a new type of beam-to-column connections for SMRFs through extensive theoretical analyses, computer simulations, and laboratory tests. The new beam-to-column connections are characterized by the ease of installation, controllable seismic performance and other favorable features such as avoidance of beam flange local buckling and the ease of repair after earthquakes. The research team will also make efforts to investigate connection capacity to absorb hysteretic energy, establish a framework for controlling connection performance, develop improved models for connection analysis and design, experimentally evaluate and validate reparability of the connections as well as seismic resilience of SMRFs consisting of such connections. The proposed research not only has a scientific value for the field of earthquake engineering but also provides a theoretical and technological basis for promoting the use of SMRFs in our country. The expected outcome of this research will enhance seismic performance and resilience of SMRFs while reducing their life-cycle costs, which offers long-term social and economical benefits.
抗弯钢框架(以下简称“钢框架”)是一种重要的建筑钢结构形式。以往地震中,钢框架的震害主要集中于梁柱节点。虽然在1994年北岭地震和1995年阪神地震后,学术界和工业界提出了多种梁柱节点的改良方案,但这些方案均无法有效防止梁柱节点在塑性转角增大时造成的梁翼缘局部屈曲破坏及由此产生的节点强度退化。另外,这些改良节点一旦损伤便难以修复甚至无法修复。受到狗骨式节点、屈曲约束支撑、结构保险丝等原理的启发,本项目结合理论分析、数值仿真和结构试验等手段,着力研发一种安装简单、性态可控、震后可快速修复的新型梁柱节点。本项目将阐明新型节点的损伤和耗能机理与性态控制准则,完善包含新型节点的钢框架体系抗震分析与设计理论,验证和评估节点的震后可修性及框架体系修复后的抗震性能。相应成果的应用将有助于提高钢框架结构的抗震性能和震后恢复能力,达到降低建筑结构全寿命周期成本的目的,具有显著的经济效益和深远的社会效益。
抗弯钢框架(以下简称“钢框架”)是一种重要的建筑钢结构形式。以往地震中,钢框架的震害主要集中于构件节点。虽然近年来学术界和工业界提出了多种构件节点的改良方案,但这些方案均无法有效防止构件节点在塑性转角增大时造成的构件局部屈曲破坏及由此产生的节点强度退化。另外,这些改良节点一旦损伤便难以修复甚至无法修复。本项目结合理论分析、数值仿真和结构试验等手段,着力研发多种安装简单、性态可控、震后可快速修复的新型构件节点。本项目将阐明了几类新型节点的损伤和耗能机理与性态控制准则,完善包含新型节点的钢框架体系抗震分析与设计理论,验证和评估节点的震后可修性及框架体系修复后的抗震性能。相应成果的应用将有助于提高钢框架结构的抗震性能和震后恢复能力,达到降低建筑结构全寿命周期成本的目的,具有显著的经济效益和深远的社会效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
可更换剪切型耗能梁段-高强钢框筒结构体系抗震性能与设计方法研究
自复位SMA梁柱节点的抗震性能与设计理论研究
可更换损伤元钢框架结构抗震机理与设计方法
型钢PEC柱-钢梁组合框架自复位梁柱节点抗震性能及性态设计