Even though computers nowadays have ultrahigh calculating power after decades of development, they still cannot reach human intelligence. The new hope is brought by the field of neuromorphic engineering, which tries to achieve artificial intelligence by emulating neurobiological systems. Research communities in the field have invented electronic neurons by virtue of very-large-scale-integration (VLSI) technology. However, manufacturing neuromorphic circuits still needs the other basic device - electronic synapse. Fortunately, resistive switching appearing in recent years will maybe provide practical electronic synapses for us. We grow high quality thin films of metal oxides by molecular beam epitaxy method, which can subtly control the structures and the composition of the materials in the atomic scale. We also investigate the materials by advanced equipments and methods to understand the structures, composition, electronic structures, optical properties, and so on. In this research, the physic mechanism behind the resistive switching phenomenon will is studied. The insightful and systematic understanding to the factors affect the characteristics of resistive switching devices. Finding the underlying mechanism, choosing appropriate materials, designing excellent electronic synapses, and optimizing device performance are our important goals. Our long-time research experience and abundant knowledge on resistive switching material and devices will help us establish systematic theory and manufacturing technology of electronic synapses based on resistive switching phenomenon. The electronic synapses with comparable size and efficiency with biologic synapses should be created. We will also do ourselves to set up a characterizing system to evaluate the performance of electronic synapses, which is significant not also for the scientific research but also for the device application in industry.
计算机技术经过几十年的快速发展已经具有强大的运算能力,但仍然远远赶不上人类的智能。模仿生物神经系统开发人工智能的神经工程学却给人们带来了新的希望。研究人员已经能够利用超大规模集成电路技术制备出人造电子神经元。人造神经网络和仿生智能系统的建立还需要另外一种基本器件-人造电子突触。近年来出现的电阻开关技术有望成为实现电子突触的关键技术。我们使用MBE设备外延生长金属氧化物,在原子尺度上操纵生长出新的功能材料,利用先进的测试手段对材料进行表征,研究外延生长的尺寸效应,研究电阻开关器件的物理机制和影响器件的各种因素进行深入全面的研究。解决这些问题,寻找合适的材料,设计电阻开关电子突触器件并优化器件性能。电子突触期待的尺寸、效率希望接近生物突触。寻求制备人造电子突触的系统理论和工艺技术并制备一系列电子突触器件,同时建立电子突触综合性能的表征和评价体系。
模仿生物神经系统开发人工智能的神经工程学却给人们带来了新的希望,现在已经能够利用超大规模集成电路技术制备出人造电子神经元。近年来出现的电阻开关技术有望成为实现电子突触的关键技术。我们使用了MBE设备外延生长金属氧化物,在原子尺度上操纵生长出新的功能材料,利用先进的测试手段对材料进行了表征,研究了外延生长的尺寸效应,研究了电阻开关器件的物理机制和影响器件的各种因素进行深入全面的研究。寻找了合适的材料,设计了电子突触型电阻开关器件并优化了器件性能。制备了人造电子突触阻变存储器工艺技术并制备了一系列阻变存储器器件。在国际高水平学术期刊上发表了32篇SCI学术论文,相关发明专利5项,毕业了博士研究生7名。
{{i.achievement_title}}
数据更新时间:2023-05-31
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
多源数据驱动CNN-GRU模型的公交客流量分类预测
Wnt 信号通路在非小细胞肺癌中的研究进展
用于构建人工神经网络的纯电子型忆阻器突触阵列研究
基于自旋电子器件随机性的神经网络认知系统
氧化物忆阻材料与人工神经突触器件
压电型人工耳蜗中声电阻抗匹配