People care about performance of explosive. Researchers show that hydrogen can make it. Though hydrogen can exist in chemical compound and physical structure, the latter performs much better than the former in test. On the basis of existing work, the applicant successfully uses glass microballons (GM) to storage hydrogen physically, then mixes it with explosive. The GM containing hydrogen within explosive could be modeled as hollow sphere. Because hydrogen always exists in explosive, when shockwave encounters GM with hydrogen, the GM will be collapsed and hydrogen be compressed, which will make temperature of hydrogen rising rapidly, while hydrogen would catch oxygen or oxidizing agent. These result in chemical reaction of explosive surrounding GM, which is much serious than ordinary explosive. We can see that hydrogen plays double role of hot spot and energy contributor. So explosive with GM containing hydrogen could release more energy in shorter time. Theoretically the better performance dues to hot spot, which refers to hydrogen in this project. In order to reveals the reason, hot spot model would be built in this project, and detonation mechanism of GM containing hydrogen would be researched. The role of hydrogen in explosive detonation would be discussed by analyzing the process of hydrogen plays in chemical reaction. Equations would be set out according the classic hot-spot theory and detonation theory. Finally calculation result would be compared with experiment in order to make the model and theory perfect. So methods such as experiment, theory analysis and numerical calculation would be used in order to get expected result and lay a foundation of further study and application on the explosive with GM contain hydrogen physically.
如何提高炸药的输出能量是人们关心的问题。氢能够改善炸药爆炸性能,储氢技术包括化学方法和物理方法,而物理储氢炸药具有更高的爆炸威力。研究表明,以玻璃微球形式所储存的氢在炸药内部能够形成三层球壳结构,起爆时,储氢微球在冲击波作用下壳体产生塌陷,氢被绝热压缩迅速升温,引发周围炸药化学反应,氢具有了热点特征;同时,氢作为含能物质又能够参与爆轰反应。在这两个机制共同作用下,炸药的化学反应明显加速,做功能力有了显著提高。本项目在课题组已有工作基础上开展物理储氢炸药的研究,采用理论分析、实验测试和数值计算的方法,建立物理储氢球壳模型,根据储氢微球的冲击压缩和氢反应方程,建立氢热点模型,结合炸药化学反应动力学建立物理储氢炸药的爆轰模型;控制储氢条件,优化技术参数,积累实验数据,为该方向的深入研究和技术推广奠定基础。本项目涉及爆轰理论、化学反应动力学、炸药学等多个学科。
氢能够有效提高炸药的输出能量和做功能力,这在化学储氢炸药的研究中已得到验证,而物理储氢炸药性能更优异。本项目研究了玻璃微球物理储氢炸药的氢球壳模型和冲击温升热点理论,已取得的主要研究成果概述如下:.(1)研究了两种玻璃微球储氢技术:压渗储氢和高温储氢,优选了高温高压反应釜储氢方式,建立了工艺技术方法,推导了玻璃微球中氢气渗透理论,研究了温度、微球内外压力对储氢速率和储氢量的影响,得到了储氢玻璃微球在常压下的泄漏公式。.(2)研究了物理储氢炸药的爆炸性能:利用水下爆炸、铅柱压缩实验和爆速测试对比研究了玻璃微球内分别储氦、储氧、储氮、储氢四类气体时乳化炸药的爆炸性能,综合说明储氢是微球内最佳方案,氢具有敏化和含能添加剂的双重作用,提高了炸药做功能力和爆热。.(3)建立了玻璃微球冲击响应理论模型:将玻璃微球冲击响应分为两个阶段:球壳的脆性坍塌和球内气体绝热压缩。建立了球壳脆性坍塌中球体孔隙率和冲击压力的常微分方程,使用龙格库塔法求解发现球壳脆性坍塌对微球响应影响很小;计算了玻璃微球内气体绝热压缩,得到了气体温度和压力时程曲线。研究发现,微球孔隙率对绝热压缩几乎没影响,冲击压力直接影响气体温度和压力上升速率,微球内初始压力增加会降低气体温度上升速率,氢气比氮气具有更快的冲击响应和温度和压力上升,球壳坍塌比气体绝热压缩时间小,释放能量很少,对热点形成几乎没有贡献,气体绝热压缩是玻璃微球形成热点的主要原因。.(4)改进BKW程序计算储氢RDX的爆轰参数:根据现有BKW状态方程理论编写了计算程序,得到适用于计算不同炸药密度和储氢量的“合成炸药”爆轰参数的BKW程序。.(5)其他相关工作:发展了纤维结构储氢炸药技术,研究了氢混合气爆炸性能和爆轰机制、以及RDX基钛粉混合炸药爆炸性能与热稳定性,将所研发的蜂窝结构炸药应用于爆炸焊接中,数值计算分析了储氢炸药作用下密闭结构和梁桥的动态响应特性,初步开展了高能炸药在爆炸开关中的应用研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于图卷积网络的归纳式微博谣言检测新方法
储氢型动态敏化复合乳化炸药爆轰机理和安全性研究
乳化炸药及乳化粉状炸药燃烧转爆轰研究
温度相关的非均质炸药冲击起爆和爆轰宏观反应流模型研究
固体炸药爆轰反应流模型及其参数的精确标定方法研究