Graphene (GN), with excellent physical, chemical, and mechanical properties, shows wide application prospects. However, the low effective specific surface area caused by the aggregation of GN nanosheets, the complicated preparation processes, as well as high consumption limit its performance and scale production. To build GN into a three-dimensional (3D) network structure is an effective method to solve this problem. Thus, in this project, according to the requirements of electrode materials of energy storage devices, we propose to develop a 3D printed carbon nanotubes (CNTs) reinforced graphene foam composite foam (3DP-RGF) by combining 3D printing process and in-situ preparation, and investigate the synergistic effects of its mechanical and electrochemical properties. 3DP-RGF with and without elemental doping, such as N, B, and so on, will be prepared in-situ in one-step by 3D printing, with laser sintered metal powders as catalysts and templates, decorated CNTs as reinforcement, and solid carbon sources including sucrose, as well as additives. The effect factors and mechanism of graphene growth and doping under laser irradiation will be investigated. The influence of CNTs contents, pore structures, GN/CNTs interfaces, and doping elements and their contents on the properties of the foam will be demonstrated. Combined with theoretical calculation, synergistic effects of the structure, mechanical and electrochemical performance will be analyzed, and the mechanism model will be built. The results of this research would be able to provide a new approach for the application of 3D printing technique in the preparation of GN materials, as well as theoretical foundation and experimental guidance for the application of 3D carbon materials in the field of energy storage as well as the integration of their structure and function.
石墨烯(GN)具有优异的物理、化学和力学性能,应用广泛。但GN纳米片易团聚而导致有效比表面积低、制备复杂、高能耗等限制了其优异性能的发挥。三维网络GN结构是解决该难题的有效方法之一。本课题从储能器件电极材料的需要出发,拟采用3D打印和原位合成相结合的方法,研究制备碳纳米管(CNTs)增强GN泡沫及其力学和电化学性能的协同效应。以金属粉末为催化剂和模板、蔗糖等为固体碳源、CNTs为增强体,通过3D打印实现GN的原位生长,并利用添加剂进行B、N等元素同步掺杂,一步法获得GN泡沫。研究激光诱导下GN原位合成的影响因素和机理;CNTs含量、孔结构、CNTs/GN界面、掺杂元素等对GN泡沫性能的影响,并结合理论计算,探明GN泡沫结构-力学-电化学性能协同效应,建立理论模型。成果将为实现3D打印技术在GN制备中的应用提供新方法,也为三维碳纳米材料在储能领域及结构/功能一体化应用提供理论依据和实验指导。
石墨烯(GN)具有优异的物理、化学和力学性能,应用广泛。但GN纳米片易团聚而导致有效比表面积低、制备复杂、高能耗等限制了其优异性能的发挥。三维网络GN结构是解决该难题的有效方法之一。本课题从储能器件电极材料的需要出发,利用3D打印和化学气相沉积(CVD)、模板法、粉末冶金等相结合的原位合成方法,可控制备了碳纳米管(CNTs)增强三维GN及其复合材料,并研究了其力学和电化学性能的协同效应。以金属粉末为催化剂和模板、蔗糖等为固体碳源、CNTs为增强体,实现了三维GN及其复合材料的原位生长,并利用添加剂实现了N、S等元素的掺杂。研究了不同合成方法下GN原位合成的影响因素和机理;CNTs引入方式、孔结构、CNTs/GN界面、掺杂元素等对三维GN性能的影响。在此基础上,结合抗结冰、超级电容器和电池等力学及电化学应用,探明了三维GN结构-力学-电化学性能协同机理。成果将为实现3D打印技术在GN制备中的应用提供新方法,也为三维碳纳米材料在储能领域及结构/功能一体化应用提供理论依据和实验指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
当归补血汤促进异体移植的肌卫星细胞存活
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
盐模板法原位制备石墨烯/纳米金属复合材料及其储能机制研究
具有高效协同储能功能的多孔石墨烯复合材料设计制备
柔性石墨烯/碳纳米管三维多孔复合结构的构筑及其电化学储能机理研究
磁流变“石墨烯墨水”的可控制备及其磁场辅助熔融挤出3D打印