The self-stress cable-bar mechanisms, typical of tensegrity, possess the unique kinematic characteristics of structural stability and active stiffness control during large-displacement motion. In recent years, the research and application of this type of cable-bar mechanisms were very active in the multidisciplinary fields including civil engineering, space applications, bionics, robot construction, etc. Some common theoretical problems encountered in the kinematic analysis and design of different self-stress cable-bar mechanisms can be studied in a unified way. The basic kinematics of self-stress cable-bar mechanisms will be discussed in this research project with emphasis on four key issues. (a) The movability of self-stress cable-bar mechanisms will be investigated. The reason why self-stress cable-bar mechanisms can keep stable while implementing large-displacement motion will be revealed theoretically. (b) The path-planning theory will be developed for self-stress cable-bar mechanisms with given driving conditions. The design of kinematic path can thus be conducted theoretically for those cable-bar mechanisms with complicated kinematic constraints. (c) The approaches of drive optimization will be established to guide the layout of actuators for the efficient motion driving of practical self-stress cable-bar mechanisms. (d) Aiming for the state correction of in-motion mechanisms, some preliminary studies on actively controlling the kinematic state of self-stress cable-bar mechanisms will be carried out. The findings in this project are the theoretical development of structural mechanisms, and of the fundamental theory of the kinematics of cable-bar mechanisms. The theories and methods developed in this project are applicable in multidisciplinary fields.
以张拉整体为代表的自应力索杆机构具有在实现大位移运动时还能保持系统形态稳定性、实现刚度主动控制的独特运动学特点,近年在土木、航天、仿生学、机器人等多学科领域的研究应用非常活跃,且在运动分析和设计方面也存在一些共性理论问题可开展系统的研究。本项目重点解决自应力索杆机构四个方面的运动学基础问题。(1)研究自应力索杆机构的可动性机理,理论上揭示此类机构在实现大位移运动的同时又能保证系统稳定性的原因和条件;(2)研究给定驱动下的自应力索杆机构运动路径规划问题的理论方法,解决带复杂约束条件的工程索杆机构的运动路径设计问题;(3)研究面向运动驱动的优化方法,以指导自应力索杆机构的作动器布置并实现高效驱动;(4)针对运动过程的形态偏差修正问题,还将对自应力索杆机构运动形态的主动控制方法进行初步研究。本项目的研究内容是当前结构机构学的理论发展,属于索杆机构运动学的基础性理论。研究成果可应用于多学科领域。
以张拉整体为代表的自应力索杆机构具备在实现大位移运动时还能保持系统形态稳定和实施刚度主动控制的特殊运动学特点,在土木、航天、仿生学、机器人等多学科领域具有广泛应用前景。 针对运动分析和设计存在的共性理论问题,本项目开展了自应力索杆机构五个重要方面的运动学基础研究。(1)研究了自应力索杆机构的可动性机理,理论上揭示此类机构在实现大位移运动的同时又能保证系统稳定性的原因和条件, 建立了自应力索杆机构运动路径跟踪和多稳态构型间转换的通用分析方法;(2)开展了自应力索杆机构的运动路径规划理论研究,基于虚拟势场法、快速搜索随机数法建立了重点考虑避障、结构几何柔顺性等复杂约束条件的自应力索杆机构运动路径规划方法;(3)系统研究了自应力索杆机构的驱动优化理论,面向结构的刚体位移和弹性变形运动分别提出了同时具备高计算效率和高精度的主动单元优选方法;(4)进行了自应力索杆机构的形态控制理论研究,揭示了此类特殊力学系统具备主动调节其形状与单元内力以保持承载刚度的自适应能力;( 5)对自应力索杆机构的动力学基础理论开展了初步研究。本项目的研究成果较系统地奠定了自应力索杆机构的运动学理论基础,是现代结构机构学理论的重要发展。本项目发展的理论和方法可应用于多学科领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
非自应力大位移索杆机构系统的形态学研究
基于群论的预应力索杆体系刚度解析与形态优化研究
索杆张力空间结构的形体、预应力成形技术及破坏机理
煤矿巷道锚杆(索)预应力锚固主动约束机理及设计方法研究