Conventional, a variety of chemicals are produced through two-step or multi-step chemical reactions, in which the purification and isolation processes involved are very complex. Therefore, developing bifunctional (multi-functional) catalysts, over which two or more individual reactions are combined into a cascade, or tandem reactions carried out in one pot, are significant to simplify the chemical reaction process. MIL-101, an important member in the metal–organic frameworks (MOFs) family, possesses several unique features such as high chemical stability, unusually large surface area, abundant mesoporous cages and easy chemical modification. However, applications of this bare material alone in the catalytic reactions are hardly feasible due to its limited numbers of active sites available. In this project, we propose to construct bifunctional catalysts based on MIL-101, in which noble metals (Pt, Pd or Ru) nanoparticles and acidic sites (SO3H groups or heteropoly acid) are combined together either in the cavities or in the framework of the MOF. Then, the synthesized catalysts will be applied in the gas-phase hydrodeoxygenation of methyl isobutyl ketone (MIBK, as a model compound derived from biomass), and in liquid-phase hydrogenolysis of glycerol to propanediol, respectively. The nanoparticles size of the noble metals, the relative amounts of acid sites and precious metals, as well as the spatial distribution and interactions of the two kinds of sites, will be characterized in detail. These results will be further linked to the catalytic activities of the above mentioned reaction to illuminate the synergetic effect between the active metal sites and the acidic sites over the catalysts. The developed bifunctional catalysts are anticipated to catalyze the mentioned reactions efficiently. This project that proposed to use biomass resources to produce petroleum-based chemicals, provides a new approach to promote the sustainable development of human society.
很多化学品的合成都是通过两步或多步化学反应来实现,涉及的反应和分离过程繁琐复杂,因此研制双功能(多功能)催化剂将两步或多步反应集中在一个反应器中一次完成,对简化反应过程至关重要。金属有机骨架材料MIL-101具有优良的化学稳定性、巨大的比表面积、丰富的介孔笼及化学可修饰性,但自身活性中心有限,很难单独作为催化剂使用。本项目提出采用高稳定MIL-101为载体,设计合成出集贵金属(Pd、Pt或Ru等)-酸(磺酸或杂多酸)于一体的双功能催化剂,并将该催化剂应用于甲基异丁基酮催化加氢脱氧合成烷烃及丙三醇氢解制丙二醇反应。通过优化催化剂中贵金属纳米颗粒大小、贵金属与酸中心的相对含量、二者空间分布及相互作用情况,揭示催化作用本质并发展高性能贵金属-酸双功能催化剂。本项目提出利用生物质资源生产石油基化学品,提供了一条推动人类社会可持续发展的途径。
很多化学品的合成都是通过两步或多步化学反应来实现,涉及的反应和分离过程繁琐复杂,因此研制双功能(多功能)催化剂将两步或多步反应集中在一个反应器中一次完成,对简化反应过程至关重要。金属有机骨架材料MIL-101具有优良的化学稳定性、巨大的比表面积、丰富的介孔笼及化学可修饰性,但自身活性中心有限,很难单独作为催化剂使用。本项目提出采用高稳定MIL-101为载体,设计合成出集贵金属(Pd、Pt或Ru等)-酸(磺酸或杂多酸)于一体的双功能催化剂,并将该催化剂应用于甲基异丁基酮催化加氢脱氧合成烷烃及乙酰丙酸甲酯(ML)转化成γ-戊内酯(GVL)反应。通过优化催化剂中贵金属纳米颗粒大小、贵金属与酸中心的相对含量、二者空间分布及相互作用情况,揭示催化作用本质并发展高性能贵金属-酸双功能催化剂。本项目提出利用生物质资源生产石油基化学品,提供了一条推动人类社会可持续发展的途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
双吸离心泵压力脉动特性数值模拟及试验研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
多酸基MOFs材料的设计合成及在催化脱硫反应中的性能研究
基于胍双官能团有机催化剂的设计、合成及催化性能研究
二维非贵金属双功能电解水催化剂的设计合成与机理研究
具有金属活性位点的多酸基MOFs材料设计合成及协同催化研究