Reduced recruitment and inactivation of T cells in the tumor microenvironment are the key factors of immune tolerance. In this project, we intends to explore a novel “ternary synergism” strategy to re-educate the tumor microenvironment for chemo-immunotherapy on pancreatic cancer, based on the combination of inhibiting the tumor-associated macrophages (TAMs), blocking the CXCR4/CXCL-12 (chemotactic factor) axis, and promoting the presenting of tumor cells by dendritic cell (DC). Specifically, a small molecule inhibitor BLZ-945 is used to inhibit the colony stimulating factor 1 receptor (CSF-1R) of the TAMs. The CXCR4 inhibitor AMD3100 is expected to reduce regulatory cells and avail the T cell aggregation in tumors. The drug paclitaxel (PTX) is selected to promote the presenting of tumor cells by DC. Therefore, a multimodal/ATP hypersensitive nanogel (BB@PPC-PTX) is designed to accomplish the novel “ternary synergism” strategy. The BB@PPC-PTX is electrostatic assembled by a negative charged part of BLZ-945 conjugated BSA (BLZ-BSA) and a cationic nanogel PPC-PTX, in which poly-CXCR4 blocker (PAMD) backbone is modified with phenylboronic acid (PBA) to equipped with hypersensitive properties and cholesterol (Chol) to encapsulate PTX. With ATP triggered in tumors, BLZ-BSA firstly releases from the BB@PPC-PTX by the electrostatic repulsion, which could induce TAMs depletion. Subsequently, the exposed PPC-PTX nanogel further penetrates to the deep tumor tissues to initiate the CXCR4 inhibition and tumor impair. The multimodal nanogel integrates the advantages of three drugs co-loading, ordinal drug release and tumor penetration. Taken together, the multimodal/ATP hypersensitive nanogel based on re-educating the tumor-microenvironment with ternary synergism strategy hold tremendous potential to be developed for chemo-immunotherapy on pancreatic cancer.
肿瘤微环境中T细胞钝化、募集抑制是产生免疫耐受的最重要因素。本课题采取抑制肿瘤相关巨噬细胞TAMs活性、阻断趋化因子CXCR4/CXCL-12信号轴及促进DC递呈的三元联动策略,多角度重塑肿瘤免疫微环境,构建ATP超敏纳米凝胶(BB@PPC-PTX)用于胰腺癌化疗免疫联合治疗。本课题避免多药联用载体的复杂性,合成以CXCR4拮抗剂基元构成的“治疗性载体”PBA-PAMD,修饰胆固醇侧基自交联形成可深层渗透的纳米凝胶PPC用于负载化疗药紫杉醇PTX,并以静电吸附表面覆盖BLZ-945-白蛋白小粒(BLZ-BSA)。BLZ-BSA在肿瘤微环境ATP触发下脱落,解除T细胞钝化;暴露出的PPC-PTX深层渗透并阻断CXCR4/CXCL-12信号轴抑制Treg募集;PTX促进T细胞捕获,同时发挥细胞杀伤作用。全面、科学解析纳米制剂构造、解组装与重塑免疫微环境的协同效应,为化疗免疫联合治疗提供新思路。
针对“冷”肿瘤免疫微环境中T细胞钝化、募集浸润抑制所导致的免疫耐受,本课题构建“三元联动”策略用于抑制肿瘤相关巨噬细胞活性、阻断趋化因子CXCR4/CXCL12信号轴及激活免疫循环,多角度重塑乳腺癌免疫抑制微环境。采用CXCR4拮抗剂基元构建的“治疗性载体”PBA-PAMD以避免多药共载的不可控性,其修饰胆固醇侧基自交联用于负载化疗药物紫杉醇PTX实现深层渗透,并利用静电作用力将肿瘤相关巨噬细胞杀伤剂BLZ-945-白蛋白小粒(BLZ-945-BSA)吸附于PPC-PTX表面实现可控释放。所制备的BB@PPC-PTX纳米凝胶具有高载药能力,对于PTX的载药量高达23%;当ATP浓度大于0.4 mM时,BB@PPC-PTX纳米凝胶的表面电位明显下降,可释放93.4%的BLZ945-BSA,证明其具有ATP的超敏感特性可实现精准释药。高转移性乳腺癌小鼠模型中,BB@PPC-PTX纳米凝胶可逐渐蓄积到肿瘤部位且12小时达到最大值,其在肿瘤部位的蓄积量显著高于其他器官组织。经BB@PPC-PTX治疗后,“冷”肿瘤免疫抑制有效解除,具体表现为:肿瘤微环境中肿瘤相关巨噬细胞显著减低(约50.3%),杀伤性T细胞浸润量提高近3倍;PPC-PTX内核深层渗透肿瘤深部,并阻断CXCR4/CXCL12信号轴抑制免疫抑制细胞募集,调节性T细胞显著减少约71%。此外,PPC-PTX纳米凝胶内核缓慢释放PTX,有效杀伤肿瘤细胞并增强其免疫原性,淋巴结内树突状细胞激活量提高近2倍,激活免疫循环。这种解除免疫抑制、阻断趋化因子CXCR4/CXCL12、激活免疫循环的“三元联动”策略可显著抑制肿瘤生长,减少近90%的肿瘤细胞向远端器官的转移,有效延长患癌小鼠中位生存期至40天。体内安全性评价中,BB@PPC-PTX不会导致溶血性贫血、急性感染等并发症,主要脏器未发生病变,证明其具有良好的体内安全性。该课题全面、科学解析纳米制剂构造、解组装与重塑免疫微环境的协同效应,突破了多药共载的固有形式,展现了“治疗性载体”所构建的精准释药体系用于打破肿瘤免疫抑制屏障的优势,临床转化前景良好。本项目超额完成预期研究任务,发表SCI论文28篇(18篇IF>10),3项专利公开并授权,1项实现高价值转化(1200万);获得教育部自然科学一等奖等奖励4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
农超对接模式中利益分配问题研究
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于肿瘤微环境原位自组装多肽纳米纤维的化疗联合免疫治疗研究
可注射型病毒样颗粒复合微纳米水凝胶疫苗的构建及肿瘤免疫联合治疗研究
可喷射肿瘤微环境响应性高分子水凝胶用于肿瘤免疫治疗
抗原引导构建自组装多功能纳米疫苗用于肿瘤光学-免疫联合治疗