The problem of Microbiologically influenced corrosion (MIC) is one of the major threats in the development of the marine economy. Most of the MIC research focuses have been on the metal corrosion of anaerobic sulfate-reducing bacteria (SRM), but The molecular biology mechanism of the electron transport pathway in SRM strains is not yet clear. In this project, Firstly, SRM strains were cultivated under the "carbon starvation" conditions for a long period of time. The involvement of EMIC effects in the SRM corrosion process was explored through the comparison of relevant ion concentrations; Secondly, the transcriptomics analysis was used to study the effect of carbon starvation on the regulation of expression of related genes in the ERM electron transport pathway of SRM strains, and to explore the evidence of direct electron transport pathways in SRM corroding biofilms from the perspective of molecular biology; Finally, under the conditions of providing a single electron donor in the medium, the Desulfovibrio ferrophilus IS5 strain with the EMIC pathway was analyzed by transcriptomics analysis to provide molecular biological basis for direct electron transformation. This project innovatively conducts electron transfer pathway research from the perspective of microbial metabolic regulation and transcriptomics, providing a theoretical basis for the protection and governance of MIC in the marine environment.
海洋微生物腐蚀(MIC)问题是海洋经济发展过程中面临的重大威胁之一,大多数的MIC的研究热点都集中于厌氧硫酸盐还原菌(SRM)的金属腐蚀作用,但是SRM菌株电子传递途径的分子生物学机理尚不明确。本项目创新性的量化EMIC在腐蚀行为中的比例,并从微生物代谢调控和转录组学的角度进行了电子传递途径研究。拟通过模拟实海环境的“碳饥饿”条件,探究EMIC作用在SRM腐蚀过程中的参与程度;利用转录组学分析“碳饥饿”状态对SRM菌株EMIC电子传递途径中相关基因表达的调控影响,从分子生物学的角度探究SRM腐蚀生物膜中直接电子传递途径的证据;在不同电子供体培养条件下,利用转录组学分析SRM菌株的直接电子传递行为,总结EMIC的直接电子传递路径。对基础海洋科学研究具有重要的理论意义,为海洋环境中腐蚀的防护和治理提供理论依据。
海洋微生物腐蚀(MIC)问题是海洋经济发展过程中面临的重大威胁之一,大多数的MIC的研究热点都集中于厌氧硫酸盐还原菌(SRM)的金属腐蚀作用,但是SRM菌株电子传递途径的机理尚不明确。本项目建立了一套高效完整的从天然腐蚀锈层样本中进行好氧/厌氧腐蚀细菌筛选鉴定流程,筛选了高腐蚀速率SRB菌株Desulfovibrio singaporenus 34;拟通过模拟实海环境的“碳饥饿”条件,探究EMIC作用在SRM腐蚀过程中的参与程度,验证了实验室高有机碳源含量培养模式限制了典型SRB菌株EMIC腐蚀作用;测定了高低碳源浓度下Desulfovibrio singaporenus 34生物膜的表征差异和腐蚀产物差异,证实了高低碳源浓度下Desulfovibrio singaporenus 34菌株EMIC和CMIC活跃程度的差异。研究结果对基础海洋科学研究具有重要的理论意义,为海洋环境中腐蚀的防护和治理提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
转录组与代谢联合解析红花槭叶片中青素苷变化机制
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
硫酸盐还原菌生物膜活性的原位快速测定研究
硫酸盐还原菌生物膜在废水中生长与传质机理研究
海洋硫酸盐还原菌生物脱硫及强化基础研究
磁场作用下硫酸盐还原菌腐蚀抑制及生物膜破坏机理研究