Polymer/inorganic hybrid opto-electronic devices have attracted much attention in recent because a polymer has obvious advantages such as the ease of process, low cost, light weight and flexible device fabrication, while an inorganic semiconductor shows advantages such as high carrier mobility and stability. The energy match between polymers and inorganic semiconductors is a very important factor to the polymer/inorganic hybrid devices. However, the studies to the key point are still very scarce. The reason is that there is not an appropriate.approach to control the surface work-function of an inorganic semiconductor in a large range. Based on our previous investigations, in this project, we will control the surface work-function of the inorganic semiconductor by modify the surface of inorganic semiconductors with biomaterials. Because the structure and polarity of biomaterials are various,this method can make the surface work-function change in a large range. These biomaterials will be also contrastively investigated with other interfacial organic materials. Therefore, the relation between the LUMO/HOMO of the polymer and the surface work-function of the inorganic semiconductor can be systemically and clearly investigated. Meanwhile, we also will do some researches on the compatibility of organic/inorganic and the interfacial stability for getting high performance polymer/inorganic hybrid opto-electronic devices. Based on these studies, novel conjugated polymers with the different sides of amino acid will be further designed and synthesized. The optical-electrical characteristics of composites of the nove polymers with inorganic and organic metal perovskite seimiconductors will be investigated.Then, it will be possible to set up new pathways to achieve polymer hybrid devices with an excellent performance.
高分子/无机杂化光电器件由于可以综合高分子和无机半导体的各自优势,其研究近年备受关注。高分子与无机半导体之间的能级匹配关系问题是一个至关重要的问题,将直接关系到高分子/无机界面的电荷转移效率。然而,对这一问题的研究目前尚未见系统性报道。其原因在于缺乏有效大范围调节无机半导体表面功函数的手段。本项目在前期研究基础上,拟通过系列生物分子修饰无机半导体表面,由于生物分子结构多样,分子极性变化范围广,可以大范围调节半导体的表面功函数,并通过与其它分子修饰对比,系统清楚地研究无机半导体表面功函数与高分子能级的匹配关系问题。同时,研究提高有机无机相容性及界面稳定性,以获得高性能高分子/无机杂化光电器件。在此基础上,作为项目拓展,设计合成新型的带氨基酸侧链的共轭高分子,研究其同无机半导体和有机金属钙钛矿半导体杂化的光电性能,发展获得性能优越的高分子杂化光电器件的新途径。
界面工程的研究在获得高性能的光电器件方面一直处于相当重要的地位。有机/无机杂化界面的修饰是获得高性能有机及其杂化半导体器件的重要手段。项目围绕有机/无机杂化的界面修饰和调控,研究了多种体系的界面材料在器件中的应用,这些材料包括:系列氨基酸及其修饰的共轭分子材料、二维材料硫化钼和石墨烯、新型共轭高分子材料和聚集诱导发光(AIE)材料。系统研究了界面的能级匹配情况,总结了一些有意义的规律。并在此基础上获得了一些高性能的器件,包括太阳能电池和光电探测器。在氨基酸分子结构及极性对TiO2表面的功函数影响、分子修饰的MoS2界面提高有机-无机杂化钙钛矿太阳能电池的性能、氨基酸分子修饰的高增益有机光电探测器及AIE界面材料修饰的高性能有机光电探测器方面取得了系列进展。这些结果,对未来光电器件的界面研究及其获得高性能的光电器件提供了一些非常有意义的思路和途径,在相关研究上具有非常实际的参考价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
面向云工作流安全的任务调度方法
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
有机半导体/无机纳晶杂化材料的界面控制及光电性质研究
有机-无机杂化手性光电转换器件
有机高分子/无机纳米半导体杂化功能材料
混晶半导体光电器件的深能级与光电性质