Humanoid robots have large potential applications in home services and operation in hazardous environments. However, the energy efficiency of humanoid robot locomotion is quite low comparing with that of human. The main reason is that currently humanoid robot is built on rigid joints without energy storage-release mechanism. In this case, energy is always dissipated in the back and forth movement of the joints. Thus how to build the human-like flexible actuators and establish coordinate motion planning control system are fundamental scientific issues to be solved in order to achieve the energy-efficient locomotion of humanoid robots..In this project we change the traditional design and control theory for humanoid robots, and achieve theoretic innovation from the actuator modes and their corresponding control approaches. We will investigate the biomechanics of high energy-efficient human walking, establish the mechanical model with multiple flexible bodies of human walking, and study the flexible joint design for humanoid robots. We will study high energy-efficient motion planning of energy mutual transferring for humanoid robots, and the variable-stiffness control with multiple flexible coupled bodies for humanoid robots. The objective of this project is to solve these scientific issues such as the design and control of bionic flexible joints, principle of the energy mutual transferring, and whole body coordinated control, and to establish a comprehensive theory for high energy-efficient walking to promote the development of humanoid robots.
仿人机器人在未来家庭服务、危险环境作业等方面有广阔应用前景,其研究对认识人类自身具有重要科学意义。目前,仿人机器人行走能效与人相距甚远,根本原因在于关节往往为刚性,尚无类似于人体柔性关节的能量存储与释放机制。因此,设计拟人化的柔性驱动,协调具有多柔性驱动的仿人机器人全身运动,实现关节间能量的互递,提高行走能效是仿人机器人发展亟需解决的基础科学问题。.本项目改变传统的仿人机器人设计与控制理论,从驱动形式和与之匹配的运动控制进行基础理论创新,研究人体高能效行走的生物力学机制、建立人体多柔体运动系统模型、研究仿人机器人拟人化的柔性关节、多柔体间能量互递的高效能步态规划、多柔性驱动耦合的变刚度控制等基础理论与方法,解决仿生柔性关节的拓扑设计与控制、行走的能量传递规律和刚柔混合的全身协调控制等科学问题,建立一套高能效行走理论,为仿人机器人发展奠定理论基础。
仿人机器人在未来家庭服务、危险环境作业等方面有广阔应用前景,其研究对认识人类自身具有重要科学意义。目前,仿人机器人行走能效与人相距甚远,根本原因在于机构和关节往往为刚性,尚无类似于人体柔性关节的能量存储与释放机制。因此,探究人体高能效行走的运动规律,设计拟人化的柔性机构和驱动单元,协调具有多柔性驱动的仿人机器人全身运动,实现关节间能量的互递,提高行走能效是仿人机器人发展亟需解决的基础科学问题。. 本项目围绕仿人机器人高能效行走的理论和方法开展研究,研究了人体行走的生物力学特性和关节协同运动耦合关系等内在规律,借鉴相关规律设计了拟人化的柔性机构和驱动单元,提出了具有能量互递的可变刚度高能效行走规划和控制方法,突破了仿生柔性关节的拓扑设计与控制、刚柔耦合的高能效行走运动规划和控制等科学问题,建立了一套高能效行走的基础理论和方法,提高了仿人机器人行走运动能效,同时对人体外骨骼、人体运动辅助设备的研发具有借鉴意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
基于二维材料的自旋-轨道矩研究进展
基于资本驱动的新型互联网营造系统初探
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
柔性足部系统及仿人机器人不平地面行走控制研究
仿人机器人高能效自激步态生成与平衡控制方法研究
仿生骨骼肌肉跳跃机器人的高能效驱动与控制
复合地面环境下双足机器人全/欠驱动混合的仿人行走稳定性控制