Crop population feature indices, such as leaf area index, biomass, total No.of seedling, plant stem,and spike, the degree of seedling in good order, are important for classified management in crop planting. Presently,these characteristics are usually obtained from intensive manual measurements at the cost of labor and time.Thus,the application of advanced management and planting technology based on variation of place,seeding,and time during wheat growth is still limited. Advances in computer imageing can be used as diagnostic aids in advanced crop management practices. In this project,a system with high recognition accuracy for identifying wheat population image feature indexes was estabblished by using the mathods of image process,machine study, neural network,and manual intelligence etal, synthetically. Compared to traditional geodesic results,recognition precision of wheat group features 86.2% by image technology. It is shown that image recognition is feaible for identifying crop population feature indexes from wheat population images.
利用人工智能和多媒体等现代科技手段,将图象识别技术用于小麦群体特征的信息提取和栽培管理。在实现图像处理技术获得小麦群体特征信息,示例式机器学习形成群体图像识别规则及建立群体图像识别知识库的基础上,用原型设计方法建造“小麦高产群体图像智能识别多媒体专家系统”,将对小麦因苗分类指导、动态管理,提高栽培管理水平具有重要意义。.
{{i.achievement_title}}
数据更新时间:2023-05-31
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
空气电晕放电发展过程的特征发射光谱分析与放电识别
人工智能技术在矿工不安全行为识别中的融合应用
面向工件表面缺陷的无监督域适应方法
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
遥感图象信息智能识别方法研究
图象特征提取与识别的稳定性理论及自主智能算子研究
距离图象、强度图象结合作模式识别的研究
基于知识的断口图象智能化识别与分类方法研究