Droplet-based microreactor is one of the hot research topics in modern reaction engineering, where each droplet is treated as an individual soft microreactor unit. By manipulating the continuously moving flows of droplets in microchannels, one can effectively control the fluid mixing, transport between phases and accordingly the chemical reactions. This project proposes to utilize the droplet-based reactors in the applications regarding highly viscous ionic liquids, which have unique, unconventional physical and chemical properties. In the meantime, conventional liquids with low or high viscosity will be studied as the references. By using advanced laser-based measurement technique and Lattice Boltzmann method (LBM) for simulating multi-phase, multi-component systems, we will investigate the effects of fluid properties, droplet formation, droplet coalescence, droplet break-up, droplet deformation, and interface properties on the mixing inside droplet and mass transfer between droplet and environment in order to discover the principles of process intensification in the droplet-based microreactors. In particular, special attention will be paid to the means to enhance the mixing and transport in ionic liquid involved multi-phase systems (e.g., active or passive deformation of droplet, electric or magnetic field). At last, we aim to establish the methodologies for microreactor design and optimization for multiphase product processes with ionic liquids. An ionic liquid based multiphase reaction process will be explored to demonstrate the reactor performance.
液滴流微反应器是现代反应工程的热点研究领域之一,即将液滴视为柔性微反应器单元,通过在微通道中操控连续运动的液滴流,实现在纳升到微升受限空间中有效地调控流体混合、相传递以及反应过程。本项目提出将液滴流微反应器与具有特殊理化性质的高粘度离子液体相结合,并以常规的低粘、高粘流体作为比较对象,通过先进的激光可视化测量技术和多相、多组分LBM理论模型方法定量研究微通道中液滴流的多相流动特性,考察流体物性、液滴的形成、液滴-液滴聚并、液滴破裂、液滴变形、界面性质变化等对液滴内混合以及液滴与环境间的物质输运的影响,全面揭示液滴微反应器的精确调控原理。尤其针对离子液体特殊的传递特性,探索过程强化的新方法(如通过柔性液滴主动或被动的变形作用、电场或磁场的外场作用等),最终形成适用于离子液体参与的多相产品过程的微反应器装置设计和优化原则,并选取具有代表意义的、基于离子液体的多相反应过程评价反应器效果。
液滴流微反应器是现代反应工程的热点研究领域之一,即将液滴视为柔性微反应器单元,通过在微通道中操控连续运动的液滴流,实现在纳升到微升受限空间中有效地调控流体混合、相传递以及反应过程。本项目将液滴流微反应器与具有特殊理化性质的高粘度离子液体相结合,并以常规的低粘流体作为比较对象,利用先进的激光可视化测量技术,并开发了多相、多组分LBM理论模型方法,定量研究了微通道中液滴流的多相流动特性,考察流体物性、液滴的形成、液滴破裂、液滴变形、界面性质变化等对液滴内混合以及液滴与环境间的物质输运的影响,全面揭示了液滴微反应器的精确调控原理。尤其针对离子液体特殊的传递特性,通过柔性液滴主动或被动的变形作用,探讨了高粘流体微反应器装置中混合强化的设计和优化原则,并选取离子液体催化的Suzuki反应,在微通道和微液滴反应器中显著提升了反应效果。项目还进一步拓展,以纳米药物的可控制备为背景,进一步说明了液滴流微反应器的优势。项目已发表期刊论文18篇,其中SCI文章16篇;出版中文专著1部;国际会议邀请报告2次;申请发明专利2项;培养博士毕业生4名、硕士毕业生1名;项目负责人入选“万人计划”领军人才。
{{i.achievement_title}}
数据更新时间:2023-05-31
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
基于图卷积网络的归纳式微博谣言检测新方法
滴流床反应器的性能和优化模拟研究
工件液淬沸腾两相流流动和传热的实验及LBM研究
水平井固-液-液多相流数值模拟方法及模块化集流流动特性研究和实验
表面疏水型微通道反应器内气液两相流动特性与气液传质的实验研究及数值模拟