The rapid development of portable electronic devices needs to develop corresponding flexible energy storage element urgently in large scale. This project is intended to explore a simple and fast, promising large-scale controlled technology to prepare MnO2/CNT flexible all-solid-state thin film electrodes for supercapacitors by electrospinning method, which is based on one-dimensional MnO2 and modified CNT as active material and PVA/H3PO4 as carrier. Based on the research basis of the applicant, i.e., having prepared a variety of one dimensional MnO2 materials and using electrospinning method prepared flexible nanofiber film. Taking advantage of CNTs’ excellent electrical conductivity and mechanical properties, we compound them with one dimensional MnO2 effectively by chemical modification and electrostatic adsorption. Using ultrasound and other methods to achieve uniform dispersion of MnO2/CNT blend solution. Adjusting the ratio of MnO2/CNT to PVA/H3PO4 and the electrospinning conditions (such as viscosity、conductivity、electric field intensity and etc.), this is aim at solving the spinning continuity regulatory mechanisms. With in-depth studying the distribution of nanofiber’s diameters, distribution of MnO2/CNT in the radial and axial direction of the nanofiber which are influenced by electrospinning condition, then establish a theoretical model to reveal how these factors impact the mechanical properties and the conductively of thin film electrode. Lastly, comprehensive testing the electrochemistry performance of target supercapacitors, establish the structure-activity relationship between the materials’ microstructure and electrochemical properties. All in all, this project is expected to provide a new research approach for the large-scale production of high-performance all-solid-state flexible thin film supercapacitors.
便携式电子设备的迅速发展急需规模化开发与之匹配的柔性储能元件。本项目拟以一维二氧化锰和改性碳纳米管为活性材料,聚乙烯醇/磷酸为载体,采用静电纺研制一种简单快捷、有望宏量可控制备二氧化锰/碳纳米管柔性固态薄膜电极及构筑相应超级电容器的技术。基于前期制备一维二氧化锰纳米材料及静电纺制备柔性纳米纤维薄膜的研究基础,利用碳纳米管优异的导电性和机械性能,通过化学修饰和静电吸附实现其与二氧化锰的有效复合;采用超声等方法实现二氧化锰/碳纳米管共混溶液的均匀分散,调控其与聚乙烯醇/磷酸的比例以及静电纺丝条件(粘度、电导率、电场强度等),明确解决纺丝连续性的调控机制;深入研究纺丝条件对纤维直径的影响、复合材料在纤维内径向与轴向的分布规律,建立其对薄膜电极机械性能和导电性影响的数值模型;综合测定目标器件的电化学性能,揭示材料微结构与电化学性能之间的构效关系,为规模化制备高性能柔性固态薄膜超级电容器提供新思路。
超级电容器因为具有较高的功率密度和长循环寿命的优点在储能体系研究中备受关注。本项目以一维二氧化锰和改性碳纳米管为活性材料,聚乙烯醇/磷酸为载体,采用静电纺研制一种简单快捷、有望宏量可控制备二氧化锰/碳纳米管柔性固态薄膜电极及构筑相应超级电容器的技术。采用超声等方法实现二氧化锰/碳纳米管共混溶液的均匀分散,调控其与聚乙烯醇/磷酸的比例以及静电纺丝条件(粘度、电导率、电场强度等),解决了因引入固态物质引起的纺丝连续性问题;研究了纺丝条件对纤维直径的影响,进而探讨了其对薄膜电极机械性能和导电性影响;综合测定目标器件的电化学性能,揭示材料微结构与电化学性能之间的构效关系。此外,在本项目资助下还设计并开发了多种结构的一维纳米材料,如超细MnO2纳米线阵列、多孔结构的TiO2@C纳米管束、CuCo2O4纳米线、W2N@C纳米针阵列、NiCo2S4@NiCo2S4纳米阵列、一维MoO3/MnO2核壳结构异质结等超级电容器电极材料,并研究了其用于超级电容器电极材料的电化学性能,获得了一系列不同赝电容材料用于超级电容器的各项性能指标。本项目的开展对研制高性能的超级电容器提供了一定的理论依据和实验成果,推动了超级电容器电极材料研究的进一步发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
强震作用下铁路隧道横通道交叉结构抗震措施研究
拉应力下碳纳米管增强高分子基复合材料的应力分布
外部冲击、现金柔性储备和企业投资行为
水凝胶仿生柔性电子学
柔性基、柔性关节空间机械臂的动力学与改进奇异摄动控制
基于纳米结构的钴(镍)氧化物/碳纤维纸复合薄膜电极的可控制备及电容性能研究
新型轻质柔性石墨烯片-碳纳米管基复合膜电极材料的设计、可控制备及其超电容特性研究
纤维素复合气凝胶的可控制备及其超电容性能研究
中空活性炭纤维/亚氧化钛混合电容器电极材料的可控制备及超电容性能研究