As the starting point of the badly need of core instrument or components for major tackle key problems in science and technology and high-ranking MEMS manufacturing in China, this project faced a common problem, namely the design and processing level of these core instruments or components is close to the international, but the performance and precision after assembly have a large gap with the international similar products. Based on the theoretical results got in precision microminiature mechanical system assembly during recent years, sub-micron precision alignment and precision control based on laser scanning confocal for 3-dimentional microdevices are proposed. Three key scientific problems below are considered to be researched: 1) based on the formation mechanism of laser confocal assembly alignment error, error sources will be found and error translate model will be built; 2) based on the influence mechanism of microminiature in different processes for edge scattering and imaging quality, the influence rule of the scattering mechanism of processing edge to parallel confocal light source on image quality will be studied, which caused by microcosmic geometrical and physical features because of the technique and material feature; 3) based on the optimal extraction method of the three-dimensional parameter of optical edge character in depth direction, the two-dimensional cross-sectional image information in different depth and the fast matching algorithm of coordinate points will be researched. This project will provide new theory and method for the achievement of precision alignment in assembly, provide the precision guarantee for our country's core instruments or components, and has important theoretical significance and application value to the breakthrough of some common problems and core technology in the core instrument integration in China.
本项目从我国重大科技攻关和高端微机电制造业急需核心仪表或部件为出发点,面向一个共性问题,即设计加工水平与国际相近,但装配以后的性能与精度与国际同类产品相差巨大。依据近年来精密微小型机械系统装配理论方面所取得的成果,提出三维微器件亚微米级精度共焦共像对位机理与精度控制。拟从三个关键科学问题展开研究:1)激光共聚焦装配对位误差形成机理,开展误差溯源,建立误差模型;2)不同工艺微器件边缘散射与成像质量影响机理,研究由于加工边缘因工艺方法、材料特征而形成的微观几何、物理特征对其平行的共焦光源产生散射、衍射机理对像质的影响规律;3)纵深方向光学边缘特征最优三维参数的提取方法,研究不同深度二维断层图像信息与坐标点快速匹配算法。本项目将为实现装配高精度对位提供新的理论和方法,为我国的核心仪表或部件提供精度保障,对于我国在核心仪表集成方面的一些共性问题与核心技术的突破,具有重要的理论意义与应用价值。
本项目从我国重大科技攻关和高端微机电制造业急需核心仪表或部件为出发点,面向一个共性问题,即设计加工水平与国际相近,但装配以后的性能与精度与国际同类产品相差巨大。为了解决相关“卡脖子”问题,提出三维微器件亚微米级精度共焦共像对位机理与精度控制。项目执行期间,开发共焦对位微装配软硬件系统一套,以第一或通讯作者发表SCI、EI检索学术论文11篇,其中SCI检索5篇。申请国家发明专利8项,其中获得授权6项。.1)基于激光共聚焦的高精度微装配共像对位原理研究:设计了基于单三角反射棱镜的共焦共像对位方案,并应用该光路于共焦共像对位微装配原理样机中,采集初步图像,并实现了高精度光纤对位装配。.2)不同工艺微器件边缘散射与成像质量影响机理:对实际待装配件几何形貌的散射特性对共焦测量系统响应特性影响进行建模,建立散射特性与成像质量的联系。.3)纵深方向光学边缘特征最优三维参数的提取方法:提出了基于共焦点云数据的高精度三维位姿匹配方法,搭建了一个关于由ICP算法得到的RT矩阵计算得出的角度与理论角度之间的映射关系的神经网络,分析了整个方法的综合装配精度。.4)综合误差传递模型的建立:基于多体系统理论,提出了一种结合视觉系统机械运动误差的误差传递模型建立方法,计算出几何误差元素对最终对位待装配零件的位姿造成的最大位移和角度偏差。.5)基于方差Sobol算法的精度评估方法:对装配系统的精密运动平台进行误差传递建模,利用激光干涉仪测量精密运动平台的几何误差,确定装配对象偏差的重要方向。采用基于方差的Sobol算法分别对四个重要方向进行误差敏感度分析,分析结果可指导系统的选型和安装要求,便于对精密运动平台做误差补偿。
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
基于细粒度词表示的命名实体识别研究
五轴联动机床几何误差一次装卡测量方法
基于图卷积网络的归纳式微博谣言检测新方法
动物响应亚磁场的生化和分子机制
大量程亚微米级高精度位移传感器及微位移定位系统
亚像元制图及精度评价
纳米级精度定位系统与环境耦合的微扰动控制与机理分析
亚微米厚MEMS热电阵列器件与光伏太阳能电池共联发电系统与机理研究