The Fuel tank of a military system is one of the most vulnerable components in survivability analysis since it has the greater presented area. After the projectile impacts the fuel tank, the leaking of the fuel probably causes the potential fire failure to the void area outside. The ignition prediction is the basis for the fire failure analysis. The interaction of the penetrator with the fuel tank involves the damage of the fuel tank wall, the energy transfer, the fuel ejection and the formation of the fuel mist, et.al., so how to establish the quantitative prediction model for the ignition of void area is the key problem to be solved. From the perspective of the ignition source and burning material, this project will construct the vulnerability analysis model for the ignition of the void area. The detailed contents include the followings. 1) Using the atom binding energy and the theory of radiation to perform the flash energy analysis so as to find the flash formation mechanisms when the projectile impacts the wall of fuel tank, and solve the problem of computing the ignition energy which is the source for void area failure. 2) Based on the pressure dissipation factor and the dissipation grade performing the cavitation dynamic and exergy analysis to obtain the rule of cavitation formation and evolvement under forces. And, 3) applying the modified mist ejection model for the engine to the vulnerability analysis, the non-uniform fuel ejection field model will be proposed using the maximum entropy principle to solve the problem of qualitatively modeling the fuel leaking and mist formation. In addition, the repeatable ignition test method is developed to verify the correctness of the proposed method for predicting the happening of the fire. This research can provide an important reference for the high survivability design of anti-fire approach or reliability analysis under combat environment for the fuel tank of military systems.
军事装备的燃油箱暴露面积较大,是影响生存力的最关键件之一。油箱受到弹丸撞击后,燃油泄漏很可能会导致外部干舱燃烧失效,而引燃预测是失效分析的前提。弹丸与油箱的相互作用涉及壁板受损、能量转换、燃油喷出与雾化等过程,如何建立干舱引燃预测模型是亟待解决的问题。本项目将从点火源及燃烧物质角度进行干舱引燃的易损性分析。内容包括:1)从原子结合能与热辐射角度揭示冲击载荷下的火花现象产生机理,解决干舱失效源(点火能量)的计算问题;2)提出基于压力耗散因子与耗散梯度的油箱空腔动力学可用能分析方法,获得油箱穿孔处非闭合空腔的形成与受力演化规律;3)将发动机喷雾燃烧模型修正后应用到易损性领域,结合最大熵原理,提出非均匀液滴分布的喷雾场表征模型,解决燃油泄漏与雾化的定量分析问题。提出可重复使用的弹丸撞击油箱引燃实验方法,对提出的模型进行验证。该研究可为燃油箱防燃高生存力设计及作战环境下的可靠性分析提供重要参考。
燃油箱是暴露面积较大、影响装备生存力最关键的部件之一,该部件易损性模型的正确与否直接影响装备生存力/易损性评估的准确性。本项目从点火源及燃烧物质角度进行干舱引燃的易损性分析,重点研究了弹丸撞击后的碰撞火花能、油箱内状态参数变化、燃油泄漏后液滴分布与雾化等的确定方法,发展了一套预测油箱外干舱引燃的易损性分析模型,为装备的易损性评估提供了基本数据。具体研究内容包括四部分:1)弹丸撞击油箱壁板后的典型参数计算与分析2)油箱穿孔处非闭合空腔的产生及发展规律3)油箱燃油液滴特征参数分析与引燃预测4)干舱引燃预测的实物实验与结果分析。发表学术论文9篇(期刊论文5篇,会议论文4篇),SCI索引3篇,EI索引1篇;授权国家发明专利2项;培养已毕业硕士研究生7名,在读研究生3名。研究成果可为飞机油箱的高生存力设计提供重要参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于FTA-BN模型的页岩气井口装置失效概率分析
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
复合材料结构用高锁螺栓的动态复合加载失效特性
天然气储备厂RBI分析与展望
Ordinal space projection learning via neighbor classes representation
动能弹丸撞击下金属靶板的破坏模式及其转化研究
摩擦和撞击火花引燃特性的研究
考虑应变梯度的缺口低周疲劳寿命预测模型与实验验证
车辆对桥墩撞击作用下钢筋混凝土桥梁结构的易损性研究