Functionalized graphene-based nanomaterials (FGNS) are emerging two-dimensional thin-film materials in recent years. Their excellent structure, conductivity and biocompatibility are expected to be the matrix materials of the first choice for stem cell culture and tissue regeneration scaffolds. However, the currently available FGNS scaffolds have not been able to achieve the integration of micro-current and photoelectromagnetic field for cell growth, and thus can not achieve the differentiation regulation in the growth process. In this project, based on the previous research on 2D materials and high-performance photovoltaic devices, we will explore a new type of plasmonic enhancement optimized graphene optoelectronic chip based on graphene composite Si p-n junction photovoltaic materials. The surface of the p-n junction is covered with a single layer of n-type graphene to form a photoelectric gain layer by a rapid oxidation to dedusting surface state technology. The PS pellets template is precisely adjusted with an electric field and evaporated to form a plasmonic periodic Au holes array; The pellets are assembled by the small pieces of reduce graphene oxide and are biocompatible linked to serve as a substrate for cell culture. With the chip generated micro photocurrent coupling to the plasmonic enhanced polarized electromagnetic field, to achieve the purpose of regulating stem cell growth and differentiation. This research will not only have broad application prospects in the field of biology, but also provide new ideas for the research and development of new and efficient photovoltaic materials.
功能化石墨烯基纳米材料(FGNS)是近年来新兴的二维薄膜材料,具有优异的结构、导电及生物相容性,有望成为干细胞培养和组织再生工程支架的首选基质材料。但目前已有FGNS支架尚不能做到微电流和光电磁场一体化介入细胞生长,故无法实现对细胞生长的分化调控。本项目将在二维材料及高性能光伏器件前期研究基础上,探索以石墨烯复合Si p-n结光伏材料,合成新型等离激元增强型石墨烯优化光电芯片。内容包括:在p-n结迎光面通过快速氧化去表面态新工艺、覆以单层n型石墨烯形成光电增益层;以电场精密调节PS小球模板结合蒸镀Au形成等离激元周期阵列;在PS@Au小球上组装还原氧化石墨烯小片、并进行生物相容性链接,作为细胞培养基底; 用芯片产生的光致微电流与等离激元增强的极化光电磁场相耦合,达到调控干细胞生长与分化的目的。这一研究成果不仅将在生物学领域有着广泛的应用前景,也可为新型高效光伏材料的研发提供新思路。
针对目前国际流行的功能化石墨烯基纳米材料(FGNS)细胞支架尚不能做到微电流和光电磁场一体化介入细胞生长、故无法实现对细胞生长和分化实行人工光合效应调控这一现实,本项目提出探索以石墨烯复合Si p-n结光伏材料,合成新型等离激元增强型石墨烯优化光电芯片细胞支架。该芯片的架构和设计方案是:在p-n结迎光面通过快速氧化去表面态新工艺、覆以单层n型石墨烯(G)形成光电增益层;以电场精密调节PS小球模板结合蒸镀Au形成等离激元周期阵列;在PS@Au小球上组装还原氧化石墨烯小片、并进行生物相容性链接,作为细胞培养基底; 用芯片产生的光致微电流与等离激元增强的极化光电磁场相耦合,达到调控干细胞生长与分化的目的。执行过程中设计了两种等离激元材料强化的干细胞培养芯片Au KD/Ti/n-Si/p-Si和Au KD/G/n-Si/p-Si,用相当于AM1.5标准日光1/10至1/30强度的模拟日光照射生长干细胞的Au KD迎光面,这种人工光合效应使干细胞的生长和分化速率有3-6倍的增长。项目的实施为光电调控干细胞快速生长提供了可行性。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
高龄妊娠对子鼠海马神经干细胞发育的影响
石墨烯等离激元增强的Si基阻挡杂质带复合结构探测器研究
石墨烯基系统中太赫兹等离极化激元的研究
石墨烯动态调控手性表面等离激元结构研究
一维石墨烯光栅中的拓扑等离激元及其特性研究