Nowadays, drug abuse is a serious threat to the human health and community stability, thus it is extremely critical to construct rapid and sensitive detection techniques for illegal drug assay. Analysis based on electrochemiluminescent (ECL) microchip is one advanced technology combining microfluidic chips and ECL detection techniques. Due to its advantages such as low sample consumption, high-speed analysis, highly sensitivity, ECL microchip is expected to have great prospect in illegal drug analysis. Indium tin oxide (ITO) is currently the most applied transparent electrode for ECL microchip. However, the rare earth indium is highly expensive and non-renewable, therefore it is urgent to explore the substitutes for ITO. Because of its good conductivity and high transmittance, graphene has been attracting great interest of the researchers from varied fields. Thereinto, graphene prepared by the chemical vapor deposition (CVD) method usually exhibits large size and low defects and thus is regarded as the most competitive substitute for ITO. Herein, this project is to establish ECL microchip using CVD graphene as transparent electrode. The electrode is achieved by treating CVD graphene through photolithography, etching, etc. Then efficient solid-state ECL sensors will be fabricated by immobilizing tris(2,2′-bipyridyl)ruthenium(Ⅱ) or its derivatives on the CVD graphene electrode through the interactions like electrostatic attraction, π-π stacking, etc. ECL microchip will also be integrated with suitable sample separation microchannel and detection cell. The as-fabricated ECL microchip can be used as a portable, rapid and sensitive analytical platform for the efficient detection of the representative illegal drugs such as heroin, cocaine, etc. The developed methods will provide basis for establishing microminiaturized instruments for rapid, sensitive illegal drug analysis.
毒品泛滥严重威胁人类健康和社会安定,研发其快速灵敏分析方法迫在眉睫。电化学发光(ECL)芯片因结合了微流控芯片和ECL检测两种技术的优点,在毒品分析中极具发展前景。目前ECL芯片的透明电极普遍选用氧化铟锡(ITO),但稀土铟价格高且不可再生,故寻找ITO替代物具重要意义。化学气相沉积(CVD)法制备的石墨烯具有导电性好、透光率高、尺寸大和缺陷低的优势,是ECL芯片制备中最具潜力的ITO替代物,但该方面研究尚属空白。本项目拟采用光刻、刻蚀等方法将CVD石墨烯图案化以用于ECL芯片上透明电极的制备;通过静电吸附、π-π叠加等方式将三联吡啶钌等探针固定在电极表面建立ECL传感器;在芯片基底上集成合适的样品分离通道和检测池,进而得到完整的ECL芯片;以可卡因、海洛因等毒品物质的检测为例,建立基于该芯片的便携、快速、灵敏的毒品分离分析方法。本项目研究将为发展快速准确地分析毒品的微小型微设备奠定基础。
毒品泛滥严重威胁人类健康和社会安定,研发其快速灵敏分析方法迫在眉睫。电化学发光(ECL)芯片因结合了微流控芯片和ECL检测两种技术的优点,在毒品分析中极具发展前景。目前ECL芯片的透明电极普遍选用氧化铟锡(ITO),但稀土铟价格高且不可再生,故寻找ITO替代物具重要意义。化学气相沉积(CVD)法制备的石墨烯具有导电性好、透光率高、尺寸大和缺陷低的优势,是ECL芯片制备中最具潜力的ITO替代物,但该方面研究尚属空白。本项目采用光刻、刻蚀等方法将CVD石墨烯图案化以用于ECL芯片上透明电极的制备;通过静电吸附、π-π叠加等方式将三联吡啶钌等探针固定在电极表面建立ECL传感器;在芯片基底上集成合适的样品分离通道和检测池,进而得到完整的ECL芯片;以可卡因、利多卡因等物质的检测为例,建立基于该芯片的便携、快速、灵敏的毒品分离分析方法。同时发展了基于3D石墨烯、类石墨烯等材料实现了高效稳定的固态电化学发光传感器的建立及药品检测应用,发展了石墨烯和类石墨烯量子点材料,为电化学发光检测提供了性能优势的探针材料。本项目严格按照计划书要求,在2016年1月至2019年12月项目执行期间,已顺利执行所有研究计划,完成了研究目标,发表高水平论文36篇,申请专利18项,相关研究为发展快速准确地分析毒品的微小型微设备奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
以石墨烯为透明导电阳极的有机电致发光基础研究
全石墨烯电极柔性透明有机发光器件研究
GaN外延片直接CVD生长免转移石墨烯及其在LED中的电极和散热应用
氮化镓发光器件石墨烯透明电极的物理机理和性能研究