双轨道图是指在图的自同构群作用下点轨道数或边(弧)轨道数为2的图或有向图。本项目将综合运用图论、群论和概率论的理论和方法研究这类图的边连通性、弧连通性、点连通性、超边连通性、超弧连通性和超点连通性。该项目还将首次提出两类点轨道数不超过2的有向图,即有向Bi-Cayley图和有向Mixed-Cayley图,并研究它的各类连通性。力争完全确定这类图的弧连通度、超边连通性和超弧连通性,双轨道二部有向图的点连通度和超点连通性,有向Bi-Cayley图和有向Mixed-Cayley图的连通度和超点连通性。在围长条件下给出双轨道有向图的点连通度达到最小度得充分条件。最后,在常见的随机图模型下确定有向Bi-Cayley图的直径和连通性的渐近性质。
双轨道(有向)图是指在图的自同构群作用下点轨道数或(弧)边轨道数为2的(有向)图。在本项目中,我们研究了这类图的边连通性,弧连通性,点连通性,超边连通性,超弧连通性和超点连通性。特别地,本项目提出了两类特殊的双轨道有向图,即有向Bi-Cayley图和有向Mixed-Cayley图,并研究了它们的各类连通性。在上述研究基础上,本项目增加了一些高阶连通性的研究,如限制性(弧)边连通性,限制性点连通性和圈边连通性等。
{{i.achievement_title}}
数据更新时间:2023-05-31
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
图的彩虹连通性与树-连通性
图的彩虹连通性和单色连通性
对称图的连通性
循环图的同构和连通性