The inorganic/organic hybrid materials that consist of multiple physical properties, such as spin transition and fluorescence would exhibit the synergistic interaction in many fields. Such a protocol would undoubtedly have prospects in the fields of biomarkers, drug delivery, and thermometry. Based on the coordination chemistry, we will prepare a series of chelating ligand for spin crossover in the project, which is linked to organic fluorogenic group through covalent bond. By doing so, the spin-crossover functional group will be combined with fluorescent groups in an individual molecule, which will be further coordinated with Fe(II) ion to fabricate fluorescent spin crossover compounds. The compounds will be characterized by variable-temperature structure, fluorescence and magnetism. On the other hand, we will prepare some polynuclear SCO@SiO2 nanoparticles by reacting multichelating ligand with Fe(II) under the condition of reverse microemulsion. Then the nanoparticle will further be grafted by some fluorescent group through silicate in order to graft some fluorescent groups on the surface of the inorganic solid as support. Hence, the fluorescent spin crossover@SiO2 nanocomposite materials will be prepared. The investigation of fluorescence property of materials, including intensity, wavelength shift, quantum yield and lifetime to probe the temperature dependence. The study of variable-temperature magnetic data revealed the interaction between fluorescent signals and magnetic susceptibility. According to the synergy between them, the magnetic bistability-based fluorescent thermometer will be developed.
具有多种物理性质的固体无机/有机杂化材料在诸多领域显现出协同性相互作用,受自旋转换调节的荧光材料在药物输送、生物标记和温度测量等领域具有潜在的应用价值。本项目以配位化学为基础,设计合成自旋转换多齿有机配体,一方面,通过共价键连接荧光基团,将自旋转换功能基团和荧光基团偶联在一个分子中,再进一步和Fe(II)配位形成带有荧光基团的自旋转换配合物,表征配合物的变温结构、荧光性质和磁性;另一方面,通过多螯合位点配体和Fe(II)在反相微乳条件下制备多核自旋交叉@SiO2纳米粒子,再进一步和带有三乙氧基硅烷的荧光基团通过接枝共聚,使得无机固体氧化物载体表面修饰荧光基团,从而形成荧光/自旋转换@SiO2纳米复合物固体材料。通过表征材料的荧光性质(强度、位移、量子产量、荧光寿命等)和磁性的温度依赖性,揭示荧光信号和磁信号的相互作用规律,通过建立两者的协同效应,发展基于磁双稳性的荧光温度传感器。
具有多种物理性质的固体无机/有机杂化材料在诸多领域显现出协同性相互作用,磁性荧光材料在药物输送、生物标记和温度测量等领域具有潜在的应用价值。在项目执行期内,设计合成了多种有机配体,系统研究了其和过渡金属或者稀土离子的组装、结构与温度依赖的物理性能。成功合成了一系列铁簇化合物并对其进行了结构表征与电子行为研究;基于不对称螯合配体设计合成了系列 3d-4f 多核数杂金属分子组装体,系统研究了分子发光对外界刺激,如温度、压力的响应发光行为;采用 Gd/Mn 杂化体系,研究了磁制冷和荧光的双重性质,为发展荧光磁性材料奠定了理论基础;采用后合成方法,设计了一系列稀土@MOF 杂化材料,并研究了温度响应发光机制;提出咪唑配体的离域‒定域电子结构的设计思路,发展了反向热猝灭荧光MOF材料,并详细研究了温度响应机制。通过表征材料的荧光性质(强度、位移、量子产量、荧光寿命等)和磁性的温度依赖性,揭示荧光信号和磁信号的相互作用规律,通过建立两者的协同效应,发展基于磁双稳性的荧光温度传感器。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于二维材料的自旋-轨道矩研究进展
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
自旋转换分子复合材料的研究
Gd3+荧光温度特性及其能级热耦合特性研究——以实现宽范围荧光温度传感
温度传感的稳态荧光方法研究
具有磁和介电相变的自旋转换纳米复合材料的制备与性能研究