代数函数域及其在编码和密码中的应用

基本信息
批准号:11071277
项目类别:面上项目
资助金额:30.00
负责人:马连荣
学科分类:
依托单位:清华大学
批准年份:2010
结题年份:2013
起止时间:2011-01-01 - 2013-12-31
项目状态: 已结题
项目参与者:张贤科,林小雁,胡甦,李岩,赵雨生,赵佳
关键词:
公钥密码体系代数函数域代数几何码理想类群除子类群
结项摘要

研究一些特殊类型的代数函数域如Artin-Schreier函数域,Kummer函数域的理想类群,除子类群,有理点个数,Zeta函数等相关问题。运用类域论,对理想类群和除子类群的结构作更深入的研究。在Kummer函数域和Artin-Schreier函数域理想类群Redei-Reichardt公式的基础上,使用解析技巧,研究关于理想类群第二个不变量分布的Cohen-Lenstra 预测。通过使用特征和,对曲线的有理点个数进行估计,以此来研究Drinfeld-Vladut界。寻求合适的代数曲线,来构造性能良好的代数几何码。尝试用更一般的Kummer函数域和Artin-Schreier函数域的理想类群来构造Diffie-Hellman类型的密钥交换协议以及公钥密码体系和ElGamal类型的数字签名协议,改进前人利用二次函数域理想类群构造的相应的密码体系。

项目摘要

本项目对整体函数域及其应用进行了深入研究。对于一些典型的代数函数域如Artin-Schreier函数域,Kummer函数域,研究了理想类群,除子类群, Zeta函数等相关问题。对整体函数域的几个重要问题——Capitulation问题、Stufe问题和Pell方程的整数解问题进行了探索。利用有限域上指数和与高斯和的理论,对Euler多项式估计和矩阵群中高斯和估计等问题进行了研究。将和式的p-进展开推广到多重和式的情形,证明了p-进Hurwitz-Type Euler Zeta函数与p-进Diamond-Euler Log Gamma函数的一些有趣的性质。给出了有理函数域中推广Rédei矩阵的定义,以及Kummer扩张、双二次扩张以及Artin-Schreier扩张下推广Rédei矩阵的表达式,并在此基础上给出了对椭圆曲线离散对数密码系统进行Weil descent代数攻击的有效方案。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
3

城市轨道交通车站火灾情况下客流疏散能力评价

城市轨道交通车站火灾情况下客流疏散能力评价

DOI:
发表时间:2015
4

五轴联动机床几何误差一次装卡测量方法

五轴联动机床几何误差一次装卡测量方法

DOI:
发表时间:
5

面向工件表面缺陷的无监督域适应方法

面向工件表面缺陷的无监督域适应方法

DOI:
发表时间:2021

马连荣的其他基金

相似国自然基金

1

有限域上代数函数域及编码应用

批准号:10801050
批准年份:2008
负责人:杨思熳
学科分类:A0102
资助金额:17.00
项目类别:青年科学基金项目
2

计算代数及其在序列密码理论中的应用

批准号:19001032
批准年份:1990
负责人:黄民强
学科分类:A0608
资助金额:1.10
项目类别:青年科学基金项目
3

密码函数及其在伪随机序列设计中的应用

批准号:61672414
批准年份:2016
负责人:张卫国
学科分类:F0206
资助金额:63.00
项目类别:面上项目
4

有限域上代数簇的指数和与L-函数及其应用

批准号:11371208
批准年份:2013
负责人:曹炜
学科分类:A0103
资助金额:50.00
项目类别:面上项目