The applicant proposes a new type of harmonic gear drive system based on giant magnetostrictive material, which changes the essence of harmonic drive properties to form a novel low-speed and high-torque power unit along with the following features: compact structure, low inertia, quick response and high resolution. This project intends to carry out the research on the basic theory of the harmonic gear drive based on giant magnetostrictive materials. The main objectives are: (1) the development of a novel design theory of giant magnetostrictive actuator and the implementation of a corresponding prototype accordingly; (2) the design of a hydraulic micro-displacement amplifier using the method of multi-objective constrained optimization and its amplification characteristics analysis; (3) the investigation of the elastic deformation function of a flexspline and conjugate profile under the direct drive mode by adopting meshing theory; (4) and the research on the operation principle of the high-torque and low-speed mode and the corresponding control strategy for the purpose of developing a harmonic gear drive prototype based on giant magnetostrictive material and its control system.All the above are for the establishment of a design theory and control method of the harmonic gear drive based on giant magnetostrictie material eventually. The result of this research will provide the theoretical basis and key technique for the practical application of harmonic gear drive based on giant magnetostrictive material
申请人提出基于超磁致伸缩材料的新型谐波齿轮传动系统,使谐波传动特性发生本质改变,形成全新的结构紧凑、惯量低、响应快、分辨率高的低速大扭矩动力单元。本项目拟对采用基于超磁致伸缩驱动的谐波齿轮传动基础理论问题开展研究:提出有针对性的超磁致伸缩致动器设计理论并研制相应致动器样机;采用多目标约束优化方法进行液压微位移放大器设计并对微位移放大特性进行进行分析;采用空间啮合理论研究直接驱动模式下谐波传动柔轮空间变形函数及共轭齿廓;研究大扭矩微转动模式的运行机理及相应控制策略,进而开发研制超磁致伸缩驱动的谐波齿轮传动原理样机与控制系统并进行实验测试研究,最终建立超磁致伸缩驱动的谐波齿轮传动的设计理论和控制方法。研究成果将为超磁致伸缩驱动的谐波齿轮传动的实际应用奠定重要的理论基础与关键技术支撑。
通过对超磁致伸缩材料内部微观机理的研究,建立了基于GMM磁机耦合特性的谐波齿轮传动致动器模型,在此基础上,提出了致动器参数识别方法及数值求解方法,提出了致动器温度场分析方法及其对致动器特性的影响;在实验基础上确定了放大器模式,建立了放大器静、动态模型及考虑工质体积模量影响的放大倍数模型;根据致动器特性提出相应的控制策略,研制了驱动电源,保证多相的同步性与一致性;在多点直接驱动模式空间啮合机理研究基础上,研制了基于GMM的谐波齿轮传动样机,初步实现了啮合传动。项目研究提出新型谐波传动模式,为GMM谐波传动实际应用奠定理论基础与关键技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于二维材料的自旋-轨道矩研究进展
滚动直线导轨副静刚度试验装置设计
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
超磁致伸缩材料的非线性动力学及驱动器控制研究
高精度超磁致伸缩驱动器热变形控制新方法的研究
基于逆磁致效应自传感机理的超磁致伸缩微驱动方法与理论
超磁致伸缩薄膜谐振微执行器及其智能控制方法研究