The principle and technology for destruction of polychlorinated aromatic pollutants in flue gas is an important topic in the scientific research of environmental chemistry. In view of the performance defects of the current catalysts used for degradation of chlorinated aromatics. In this project, TiO2 support with controllable morphology and facet will firstly be synthesized, then Ru nanoparticles will be loaded on the specific facets of TiO2 support to develop novel Ru1/TiO2 single-atom catalysts. The catalytic activity of the prepared catalysts will be regulated by assembling and modulating the functional nanostructure on the interface of the catalysts. The effects of NO, SO2 and H2O on catalytic performance will be investigated systematically. The optimized catalysts will exhibit superior catalytic performance for oxidation of polychlorinated aromatic pollutants, such as low-temperature reactivity, poisoning-resistance, thermal stability and excellent product selectivity. Some important factors involved in the reaction, such as active center, electron transfer, intermediates, transition state will be investigated systematically with a variety of methods, especially in situ characterization methods. The relationship of composition, structure and catalytic activity of the catalysts will be explored. The reaction mechanism of oxidation of polychlorinated aromatic pollutants over Ru1/TiO2 single-atom catalysts with controllable morphology and facet will be revealed on the micro level by the combined experimental and computational study. The results of the project will provide theoretical and practical basis for developing effective control technology for polychlorinated aromatic pollutants.
焚烧烟气中多氯芳烃类有机污染物削减技术及控制原理的研究是目前环境化学领域的研究热点。本研究针对目前降解多氯芳烃催化剂性能上的缺陷,拟合成形貌和晶面可控的TiO2载体,调控Ru纳米粒子在TiO2特定晶面的落位,制备出Ru1/TiO2单原子催化剂。组装Ru纳米粒子与TiO2特定晶面间的功能纳米结构,调变催化氧化多氯芳烃的性能。评价NO、SO2、H2O等对Ru1/TiO2单原子催化剂氧化多氯芳烃性能的影响,优化出低温活性高、抗中毒性能强、热稳定性好、产物安全的新型催化剂。综合利用多种分析技术,特别是原位表征技术,获取反应过程中的活性中心、电子转移、中间物种和反应过渡态等重要信息。系统研究催化剂的组成、结构与催化活性间的构效关系,结合量子化学计算模拟,从微观层次探究形貌和晶面可控的Ru1/TiO2单原子催化剂氧化多氯芳烃的机理。本项目将为焚烧烟气中多氯芳烃的污染控制提供一种新的方法和理论依据。
焚烧烟气中多氯芳烃类有机污染物削减技术及控制原理的研究是目前环境化学领域研究的热点课题之一。催化氧化法是治理多氯芳烃污染的有效手段。本研究设计、合成了形貌和晶面可控的TiO2载体,调控Ru活性组分在TiO2特定晶面的落位,制备出Ru/TiO2单原子催化剂。调控Ru活性组分与选择性暴露特定晶面的TiO2载体的组装结构,调变催化氧化多氯芳烃的性能。采用多种现代分析手段表征了Ru/TiO2催化剂组成、结构;系统评价了Ru/TiO2催化剂降解典型多氯芳烃的性能,探究了Ru/TiO2催化剂的微观结构与催化活性间的构效关系,结合原位表征技术,解析了催化反应过程的中间产物,揭示了催化降解典型多氯芳烃的反应机理。对比研究了多种催化材料的性能及机理。本项目的研究将为多氯芳烃的污染控制提供一种新的方法和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
钢筋混凝土带翼缘剪力墙破坏机理研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
负载型金属单原子催化剂低温去除气态苯
分子筛(MFI)封装单原子铂催化剂构建及用于甲烷选择性氧化性能研究
单原子合金催化剂的构筑及低温选择性催化还原NOx的研究
单原子金属催化活性中心低温完全氧化甲醛