Pathogenic bacterial invasion on substrate surface contributes to the main cause of serious infections associated with medical- or health-related areas. Anti-bioadhesion surfaces alone are insufficient to suppress bacterial proliferation in a long time due to its passive nature, while conventional antimicrobial surfaces, heavily relying on the bactericides to exert biocidal activities, may easily trigger antibiotic resistances. Herein, by integrating superhydrophobic anti-bioadhesion and photodynamic antimicrobial activity, a novel synergistic antibacterial surface is proposed with a long-acting biocidal activity and negligible antibiotic resistance. Different photosensitizers (PS) will be loaded inside the mesoporous silica nanoparticles (MSNs) with desired particle size and pore to get the MSNs with PS (MSNs-PS). Then, hierarchically structured, superhydrophobic and photodynamic antimicrobial surfaces with adjustable roughness will be designed and developed via the sequential deposition of silica nanoparticles and MSNs-PS, and hydrophobic treatment. Our research will mainly focus on the following points: ① Preparation of photosensitizer-loaded MSNs and their antibacterial behaviors in solution; ②Design and development of synergistic antimicrobial surfaces and the investigation of bacterial-repellency; ③Synergistic antibacterial mechanism and comprehensive antibacterial properties, particularly for bacterial resistance. The key innovation of our project is: academic idea of developing the micro/nano-structured superhydrophobic surface with bacteria repellency and photodynamic biocidal performances, to get long-lasting antibacterial activities without antibiotic resistance. The study will provide new insights into the solution of the problems associated with human health caused by bacterial infections.
病原性细菌在材料表面的滋生是引发机体感染与病变的重要原因。单纯抗粘附材料表面无法长期抑制细菌繁殖;而依赖于抗菌剂的常规主动杀菌表面易引发细菌耐药性。本项目结合超疏水抗生物粘附和光动力杀菌不产生细菌耐药性的优势,提出构建新型长效协同抗菌表面新策略。首先利用介孔硅球实现对光敏剂的高效负载,通过逐级组装、固定不同尺寸实心SiO2球和光敏剂负载的介孔硅球以及低表面能处理,获得微纳结构可控超疏水-光动力协同抗菌表面。主要研究:①介孔硅球负载光敏剂体系制备与溶液杀菌行为;②协同抗菌表面构建、调控及性能;③表面协同抗菌机制及不引发细菌耐药性。主要创新为:提出构建超疏水抗粘附-光动力杀菌协同抗菌表面的学术思想,将实现不引发细菌耐药性和抗菌长效性。该研究将为解决由细菌感染所引发的人类健康相关问题,提供新思路。
病原性细菌在材料表面滋生是引发院内及机体感染与病变的重要原因。单纯抗粘附材料表面无法长期抑制细菌繁殖;而依赖于抗菌剂的常规杀菌表面易引发细菌耐药性。本项目结合超疏水抗生物粘附和光动力杀菌不产生细菌耐药性优势,提出构建新型长效协同抗菌表面新策略,利用超疏水性能实现表面细菌粘附的大幅抑制,随后通过光动力杀菌功能实现对表面少量粘附细菌的快速有效灭活。通过有效集成表面微纳结构和光动力杀菌分子,获得了多种具有超疏水-光动力杀菌功能的协同抗菌表面。.主要研究内容包括:①协同抗菌表面构建和结构参数调控;②表面结构参数和抗细菌粘附行为的关系研究以及规律、机理探究; ③表面结构参数、光敏剂负载量等对杀菌性能的影响规律研究,并揭示协同抗菌机制。.本项目取得了如下创新成果:.(1)采用层层自组装、溶剂诱导相分离等方法构建出具有不同微纳结构参数的协同抗菌表面;通过调控表面粗糙度,研究了表面微纳结构和细菌粘附行为之间的关系,实现了表面对细菌粘附行为的调控。.(2)研究微纳结构参数和光敏剂类型、载入量等对表面杀菌性能的影响规律;阐明了微纳结构表面协同抗菌机制。.(3)开发了其它具有微纳结构的功能协同抗菌表面,提高了协同抗菌效果,揭示了协同抗菌规律,阐明了协同抗菌机制。与本项目相关的所获得一系列研究成果,相关工作发表在包括ACS Applied Bio Materials, Journal of Membrane Science, Materials Science & Engineering C, ACS Applied Materials & Interfaces, Advanced Functional Materials, Chemical Engineering Journal, Journal of materials chemistry B, Journal of Photochemistry & Photobiology A: Chemistry等SCI期刊。本项目的研究将为解决由细菌感染所引发的人类健康相关问题提供新思路和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
钛金属表面超疏水抗菌体系构建的相关研究
抗细菌粘附与杀菌双功能层状高分子刷体系的构建与性能
超疏水材料表面的细胞粘附机理研究
混凝土表面渗透型超疏水涂层的仿生设计、构建与性能研究