Arsenic trioxide (As2O3) is effective for hepatoma treatment.Trivalent monomethylated arsenicals (MMAIII) and dimethylated arsenicals(DMAIII) are the metabolites of As2O3 in the liver, both of which can cause direct damage of DNA and the damage is far greater than As2O3.Thus, MMAIII and DMAIII have potential anti-hepatoma activity.In addition, arsenicals have high toxicity and are accompanied by high side effects in clinical applications. Thus in this project, we will first compare the effects of the trivalent methylated arsenicals and As2O3 to human hepatoma cell SMMC-7721 to evaluate their anti-hepatoma activities.Then we will synthesize the Biocompatibility PEG-PLGA polymer as the carrier material and prepare the arsenicals (As2O3, MMAIII, DMAIII)-loaded PEG-PLGA stealth nanoparticles to reduce the side effects of the arsenicals.The influence factors for encapsulation efficiency, drug load and the release rate will be systematically studied to select the nanoparticals with good controlled release behavior. Following that we will connect the anti-hepatoma monoclonal antibody HAb18 to the surface of the nanoparticals to prepare the immune targeting arsenicals-loaded nanoparticals, of which the stealth features and the effects to hepatoma cell will be investigated.Finally we will build the SMMC-7721 mouse hepatoma model and the anti-hepatoma activity of the immune targeting arsenicals-loaded nanoparticals will be estimated with the model in vivo to evaluate the performance of the HAb18-PEG-PLGA carrier.These results will provide a theoretical basis and practical guidance for the arsenicals used in clinical treatment of hepatoma.
As2O3对肝癌有较好的治疗效果。三价单甲基及双甲基砷化物(MMAIII、DMAIII)是As2O3在肝脏中的代谢物,两者均能够引起DNA的直接损伤且损伤力远远大于As2O3,具有潜在的抗肝癌活性,此外砷化物毒性高,临床应用副作用较大。因此本项目将以人肝癌细胞SMMC-7721为细胞模型,系统研究比较As2O3、MMAIII、DMAIII的抗肝癌活性,并以生物相容性PEG-PLGA聚合物为载体材料制备载砷化物隐形纳米粒以降低其毒副作用;系统研究影响纳米粒包封率、载药量及控释速率的因素,筛选具有良好控释行为的载药粒子;通过纳米粒表面偶联抗肝癌单抗HAb18研制具有免疫靶向功能的砷化物纳米粒并研究其隐形功能及对肝癌细胞的作用;构建SMMC-7721小鼠肝癌模型并以此考察纳米粒靶向功能及抗肝癌活性以评价HAb18-PEG-PLGA载体的性能,为砷化物应用于肝癌的临床治疗提供理论基础和实践指导。
近年来As2O3对实体瘤,尤其对肝癌的良好作用受到了越来越多的关注。研究发现其在肝脏的代谢产物MMAIII、DMAIII 引起DNA的直接损伤力远高于As2O3,因此研究As2O3及其代谢产物的抗肝癌活性,有望发现更具抗肝癌活性的砷化物,并探讨As2O3良好抗肝癌作用的机理。由于砷化物半衰期短且毒副作用较高,因此设计一种具有缓释及靶向功能的载体,可为砷化物更好地应用于肝癌的临床治疗提供实践指导。基于此,本项目开展了系列研究工作,并取得了以下主要研究结果:.(一) 通过半胱氨酸还原法制备了MMAIII、DMAIII,以SMMC-7721比较了不同砷化物的细胞活性,结果表明MMAV、DMAIII 对SMMC-7721抑制效果同等实验条件下优于As2O3。其中DMAIII具有较强抗癌细胞作用,且对正常肝细胞几乎无损伤,说明DMAIII是更具抗肝癌活性的砷化物。. (二) 以PLGA为载体材料,采用双乳化溶剂挥发法,结合单因素实验和正交实验制备、优化载As2O3纳米粒。结果表明所制得的As2O3@PLGA NPs粒径为200.2±10.6nm,PDI为0.117±0.008,包封率达91.68±1.42%,且重复率高,表明成功制备了具有高包封率的As2O3@PLGA NPs。.(三)通过共价偶联法在As2O3@PLGA NPs表面修饰PEG及LA,制备了As2O3@PLGA-PEG NPs、As2O3@PLGA-PEG-LA NPs;以PEG和LA修饰壳聚糖制备其衍生物PLC,再采用双乳化溶剂法制备表面包裹PLC的As2O3@PLGA/PLC NPs。结果表明所制得纳米粒在200 nm左右,分散性良好,包封率均在90%以上,具有良好的控释能力、体外悬浮稳定性、血液相容性;纳米粒对SMMC-7721均具有明显的抑制作用,其中As2O3@PLGA/PLC NPs的抑制作用最强,其在一定程度上可以降低对正常肝细胞的损伤而提高对肝癌细胞的抑制,且无明显蛋白吸附。.(四) 以SMMC-7721构建鼠肝癌模型,评价As2O3@PLGA-PEG-LA NPs及As2O3@PLGA/PLC NPs的抗肝癌作用。实验结果表明两者对小鼠肝癌均有一定的治愈作用,且对正常肝组织的损坏程度要小于As2O3,说明具有一定的肿瘤靶向性,其中As2O3@PLGA/PLC NPs效果最优。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
多源数据驱动CNN-GRU模型的公交客流量分类预测
纳米载体介导的砷剂靶向抗肝癌研究
氧化还原敏感型前药/siRNA纳米共载体系的构建及其靶向抗肝癌作用研究
肝癌部位药物“工厂”的建立及其抗肝癌活性研究
靶向Glypican-3的双特异性抗体制备及其抗肝癌活性研究