Single photon detection is of great importance to quantum information and quantum communication, and is fundamental to “single quantum state measurement and interaction” research. 1.3 to 1.55um optical-fiber wavelength region is the number one chosen wavelength region for quantum information applications, however reliable and easy-to-use high performance single photon detection techniques are still lacking. Targeting this problem, this project proposes a semiconductor infrared upconversion single photon detection approach: through integrating semiconductor infrared detector and light-emitting diode resulting in infrared upconversion device, converting optical-fiber wavelength single photon into less-than-1um near-infrared single photon, using Si single-photon detection system finally realizing infrared single photon detection. This approach has the potential for high detection efficiency, high maximum-count rate, low dark count, and high-temperature operation, thus having important practical applications prospect. This research explores in details infrared single photon absorption and the resulting single carrier transport and recombination processes, realizes precise control of materials growth and device fabrication, and at the end achieves a high performance and compact single infrared photon detection technique. The scientific problems of the project include the processes of a single photon absorption and the resulting excitation of a single electron-hole pair or exciton, break-apart of electron-hole pair or exciton and the subsequent single carrier transport, and finally recombination of single electron (or hole) among a sea of holes (or electrons), which involves many-body effects, resulting in single photon emission. In addition, the physics of noise at the single carrier level must be studied to ensure that the upconversion process generates no or minimal noise.
单光子探测对于量子信息和量子通信等需求意义重大,是“单量子态检测及相互作用”研究的基础。1.3至1.55微米光纤通信波段是量子信息等应用的首选波段,而该波段尚缺乏可靠易用的高性能单光子探测手段。针对此问题,本项目提出半导体红外上转换单光子探测方案:通过半导体红外探测器和发光二极管集成获得红外上转换器件,将光纤通信波段红外单光子转换为1微米波长以下近红外单光子,随后利用Si单光子探测器探测。此方案有望获得高探测效率、高最大计数率、低暗计数率、以及高工作温度,具备重要的实际应用前景。项目将深入研究半导体材料和结构中红外单光子吸收和单光生载流子输运、复合特性,实现材料生长和器件制备的精确调控,最终研制一种性能优异、结构紧凑的红外单光子探测方案。通过该项目,我们将深入研究红外单光子的吸收、单电子空穴对激发、单载流子输运和复合、单光子发射等关键科学问题,透彻理解单载流子层面的噪声机制。
单光子探测对于量子信息和量子通信等需求意义重大,是“单量子态检测及相互作用”研究的基础。1.3 至1.55 微米光纤通信波段是量子信息等应用的首选波段,而该波段尚缺乏可靠易用的高性能单光子探测手段。针对此问题,本项目通过半导体红外上转换实现单光子探测,将光纤通信波段红外单光子转换为1 微米波长以下近红外单光子,随后利用Si 单光子探测器探测。首先针对微弱信号探测的InGaAs PIN探测器,以及在极弱电流驱动下的GaAs/AlGaAs LED通过理论进行了研究和优化,在此基础上生长材料并制备了器件,获得高性能的InGaAs PIN以及GaAs/AlGaAs LED分立器件。然后利用针对小片键合特别设计的键合夹具,实现了晶片键合,将探测器与发光二极管实现器件集成,集成后的上转换器件可以获得比较好的内量子效率及上转换性能。利用该器件与Si SAPD的集成,我们成功地在室温情况下实现了飞瓦级别功率的1.5微米波长光的探测,并且在热电制冷条件下可以获得更好的性能。成功验证了基于半导体上转换单光子的可行性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
五轴联动机床几何误差一次装卡测量方法
上转换纳米材料在光动力疗法中的研究进展
夏季极端日温作用下无砟轨道板端上拱变形演化
聚酰胺酸盐薄膜的亚胺化历程研究
基于同步泵浦技术的高性能红外单光子频率上转换探测研究
基于相干频率下转换的红外单光子源的研究
甲状腺肿瘤中红外光谱频率上转换探测
高速高可靠低成本红外单光子探测器的研究