With energy efficiency requirements of CNC equipment and production system gradually increase, manufacturers face the challenge of the conflict between performance, production efficiency and energy efficiency. Researches show that structure has the important influence direct and indirect on energy efficiency. Existing methods mainly through the optimization of processing parameters can't solve energy efficiency from the design source, thus the project proposes quantitative performance reliability and formal description method applying extension set theory. According to the structure characteristics and the experience data, energy factors of machine and parts are extracted. Design structure matrix and fuzzy graph theory are adopted to establish energy model under the performance reliability constraints, then the mechanism of conflict is set up using the extension theory to get energy flow structure model and the function relationship between many parameters. On this basis, optimization design method is presented based on the biological adaptive growth through the analysis similarity between bionic mechanism and the energy interaction. The monolithic topology optimization and multi-point constraints are adopted to simulate the rigid connection between components for solving spatial layout of components and coordination optimization of structure configuration. Finally, multi-objective optimization system of life cycle energy and performance reliability is form based on the ecological energy balance mechanism. Research has important theoretical significance and application value to realize green design and low carbon manufacturing of numerical control equipment.
随着数控装备和生产系统高能效需求的逐渐增加,制造商面临性能、生产效率和能效相互作用及冲突的挑战,研究表明机械结构对能量效率具有直接和间接的重要影响。本项目针对通过优化工件加工参数提高制造过程能效的方法不能从设计源头解决高能耗的问题,应用可拓集合理论量化性能可靠性及形式化建模描述,依据结构特征及经验数据提取整机及零部件能量特征因子,进而采用设计结构矩阵和模糊图论建立性能与可靠性多尺度融合的能量模型,并利用可拓理论建立冲突消解机制得到能量消耗与结构参数之间函数关系;在此基础上通过分析仿生机理与能量交互之间的相似性,提出基于生物自适应生长机理的零部件优化设计方法,采用整体式拓扑优化和多点约束模拟组件之间刚性连接,优化组件的空间布局及结构构型的协调优化;最后基于能量平衡机理建立生命周期性能可靠性及能量多尺度融合的评价体系。课题研究对实现数控装备绿色设计及低碳制造具有重要的理论意义和应用价值。
随着数控装备和生产系统高能效需求的逐渐增加,制造商面临性能、生产效率和能效相互作用及冲突的挑战,研究表明机械结构对能量效率具有直接和间接的重要影响。本项目针对通过优化工件加工参数提高制造过程能效的方法不能从设计源头解决高能耗的问题,从数控装备结构设计角度,进行能效优化方法的研究。.研究结果包括以下四个方面:1)应用可拓集合理论量化性能可靠性及形式化建模描述,依据结构特征及经验数据提取了整机及零部件能量特征因子,挖掘了具有价值的能量特征数据集合;2)采用设计结构矩阵和模糊图论,建立了性能与可靠性多尺度融合的能量模型,并利用可拓理论建立了冲突消解机制得到了能量消耗与结构参数之间函数关系,揭示了运动过程能量流分布规律;3)通过分析仿生机理与能量交互之间的相似性,提出了基于生物自适应生长机理的零部件优化设计方法,采用整体式拓扑优化和多点约束模拟组件之间刚性连接,结合全局协调优化理论对结构的自适应生长问题进行分层优化求解,优化了组件的空间布局及结构构型的协调优化;4)基于能量平衡机理建立了生命周期性能可靠性及能量多尺度融合的评价体系。.研究结果为实现数控装备可持续设计及制造提供了坚实的理论及应用基础,尤其在能效优化方面提供了理论与方法支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于国产化替代环境下高校计算机教学的研究
基于铁路客流分配的旅客列车开行方案调整方法
一种基于多层设计空间缩减策略的近似高维优化方法
神经退行性疾病发病机制的研究进展
基于多色集合理论的医院异常工作流处理建模
数控机床可靠性多尺度精细建模方法研究
耦合多特征部件的数控装备可靠性建模与评估技术研究
数控装备运行可靠性的多源时变耦合建模与实时评估研究
电子装备的多场耦合设计理论与方法