Compared to thermally driven reactions, plasmonic catalysis exhibits excellent performance in activity, selectivity, and stability. However, the study of plasmonic catalysis mainly focuses on the Group 1B metal nanomaterials and their catalytic reactions. Moreover, the understanding of key process and regulation mechanism in term of molecular evolution for plasmonic catalysis is still limited. This project aims to design and fabricate sliver-based alloy single-atom catalysts, as well as their application and mechanistic study in plasmonic catalysis. The proposed research will be organized into three parts: (1) develop effective strategies to synthesis sliver-based alloy single-atom catalysts in order to anchor active metal atoms on the surface of sliver nanocrystals; (2) apply these single-atom catalysts into plasmonic catalysis, including hydrogen formation, selective hydrogenation and hydroformylation reactions. We will attempt to improve the catalytic performance and expand the applicability of metal elements and catalytic reaction for plasmonic catalysis; (3) investigate the process of molecular evolution based on synchronous radiation and in-situ equipment to elucidate the regulation mechanism and key influence factor for plasmonic catalysis.
相比于传统的热驱动催化反应,等离激元共振催化在活性、选择性和稳定性方面展现出更为优越的性能。但是,当前的等离激元共振催化研究主要局限于具有优异等离激元共振效应的第一副族金属材料及其催化反应,且对于分子演化层面的关键过程和调控机制等问题仍不明确。本项目拟设计和构筑银基单原子合金催化剂,将银基单原子合金催化剂应用到产氢、选择性加氢、甲酰化等重要催化反应中,通过等离激元共振催化过程实现催化性能的提升和优化,有效拓展等离激元共振催化的金属元素和催化反应适用性,借助同步辐射原位技术深入研究分子演化过程,凝练出控制催化反应的关键调控因素和调控过程。
申请人围绕单原子纳米催化剂的定向设计和精准制备做出了系统的创新性工作:(1)发展出了离子交换法制备单原子催化剂的策略,实现了单原子催化体剂的绿色、高效、便捷制备;(2)突破单原子催化剂负载量低的瓶颈,构筑了高负载量单原子催化剂;(3)拓展单原子催化的概念到传统催化剂的改性。申请人拟在前期工作的基础上,进一步精确控制单原子催化剂的配位结构,发展高负载量单原子催化剂,借鉴生物酶催化中心结构仿生合成单中心和多中心催化剂,并将纳米催化材料应用到小分子活化转化中,研究小分子转化的关键过程和调控机制,发展新型高效纳米催化体系。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
表面等离激元共振腔及其应用研究
表面等离激元共振技术提高AlGaN基紫外LED发光效率研究
石墨烯量子点-银异质结表面等离激元共振增强共轭聚合物发光研究
局域表面等离激元共振材料钨青铜的研究