The uranium concentration in the concentrated brine from sea desalination and the salt lake brine is much higher than that in seawater, thus these brines can also be seen as important uranium resources which can be utilized in the future. This project aims to develop a novel and easily-separable silica magnetic double-shell sorbents (SMDS) by using a microwave-assisted hydrothermal synthesis method, which could be used as sorbents for the extraction of uranium from brines. The inner shell of SMDS is a dense silica layer for encapsulation of the inner-core magnetic substance (Fe3O4 nanoparticles) to avoid its oxidation or dissolution; while the outer shell of SMDS is a functionalized silica layer with a well-ordered mesoporous structure which facilitates the adsorption of uranium within the pores of sorbents. The shell thickness of the silica sorbents is adjusted by varying the raw material ratio(such as Fe/Si mole ratio) and reaction time for the synthesis process, and the pore structure of the sorbents is controlled by changing the molecular mass (or the molecular length) of P123 and its doses. In these ways, the structures of the sorbents are optimized. In addition, the adsorption capacity and the adsorpiton selectivity for uranium is enhanced by functionizing the sorbents with Lewis base groups (containing N, P, or O atoms). Furthermore, the adsorption mechanism for the extraction of uranium from brines was explored by the integration of spectra analysis (such as XPS, FTIR, etc.), adsorption theoretical models analysis and density functional theory calculation (Kohn-Sham method). The research work in this project is important for the utilization of the uranium resources in brines, the satisfaction of the demand of nuclear fuels, and the treatment of the uranium- containing waster water.
海水淡化浓盐水、盐湖卤水等含铀浓度远高于海水,也是重要的铀资源,有待开发利用。本项目利用微波辅助水热法合成一种新型易于磁分离的双壳层SiO2磁性吸附剂(SMDS),用于卤水高效提铀。SMDS内壳层为致密的SiO2层,用于包覆内核磁性物质(Fe3O4 纳米粒子),避免使用过程中Fe3O4 氧化或溶出;外壳层为具有发达有序介孔结构的功能化SiO2层,便于铀进入孔道内吸附。通过改变原料配比(如Fe/Si摩尔比)及反应时间等调控各壳层厚度,以及改变致孔模板剂P123分子量及用量调控孔结构,由此优化吸附剂结构。并利用Lewis碱(含N、P、O)功能基修饰提高铀吸附容量和吸附选择性。结合能谱分析(如XPS、FTIR等)、吸附模型分析及密度泛函理论(Kohn-Sham方法)计算,明确卤水提铀吸附机理。有关研究对于实现卤水中铀资源有效利用,保障核能生产燃料需求,以及含铀废液处理均具有重要意义。
海水淡化浓盐水、盐湖卤水等含铀浓度远高于海水,也是重要的铀资源,有待开发利用。本项目合成新型易于磁分离的SiO2磁性吸附剂,用于卤水高效提铀。有关研究对于实现卤水中铀资源有效利用,保障核能生产燃料需求,以及含铀废液处理均具有重要意义。主要研究内容及结论如下:.(1) 制备了膦酸基团修饰二氧化硅磁性微球(PA-SMM),用于吸U(VI)。结果表明,PA-SMM能有效吸附U(VI),在pH5.0及298K时,U(VI)最大吸附容量76.9mg/g。吸附等温线符合Langmuir模型,吸附动力学符合拟二级模型,以内层络合为主要机理。PA-SMM对U(VI)吸附容量高于MS微球,吸附主要通过膦酸根与U(VI)络合,为自发吸热过程。吸附U(VI)后的PA-SMM用酸性EDTA溶液再生,可重复使用多次。.(2) 制备含O/N功能基团的磁性SiO2微球(MSN-DA和MSN-DATA),考察了二者对U(VI)的吸附性能。XPS分析表明二者对U(VI)的吸附均为内层络合吸附机理,但对于MSN-DATA,离子交换机理也起重要作用。MSN-DA对U(VI)的吸附容量高于MSN-DATA(MSN-DA:139.1mg/g;MSN-DATA:103.9mg/g),是因为其分子构象阻力较小,氨基/亚氨基吸附位较多。两种吸附剂均能快速吸附U(VI),并且有较好的吸附选择性和重复使用性。.(3) 合成了不同Lewis碱功能基(含N、P、O功能基)功能化磁性二氧化硅吸附剂,分别在U(VI)溶液和模拟卤水中对U(VI)的吸附性能。MS材料对U(VI)的吸附容量次序为:MSP-3>MSA>MSP-2>MSP-1>MSP-4。MSP-3对U(VI)具有很高的吸附容量,是由于MSP-3具有较高的功能基团密度及较小的构象阻碍。在纯U(VI)溶液中的吸附等温线Langmuir模型,吸附动力学符合拟二级模型,表明以化学吸附为主要机理。在模拟卤水中吸附时,MSP-1、MSP-2及MSP-4 对U(VI)的吸附等温线均呈S型;MSA对U(VI)的吸附等温线呈C-型;MSP-3具有最高的U(VI)吸附容量,其吸附等温线L-型。对于多数MS基吸附剂,利用0.2M 盐酸能将吸附剂上的U(VI)完全脱附。对于MSP-3和MSA,则利用0.5M 盐酸能完全脱附U(VI)。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
混采地震数据高效高精度分离处理方法研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
功能化介孔炭微球吸附铀的性能及机理研究
核壳结构磁性聚膦腈纳米微球的可控制备及其对铀的吸附行为研究
多功能磁性介孔复合微球的设计及对铀的吸附分离研究
基于UHMWPE纤维的海水提铀吸附材料制备及铀吸附性能研究