With the rapid development of information society, the requirement on data storage is becoming more and more higher. The high quality storage medium is critical to achieving high density data storage. In recent years, novel storage technology and media have stringed up at an increasing rate. Among them, organic material-based storage media have been paid great attentions. However, it is difficult to control the assembly of the active center and difficult to obtain orderly film in a large scale due to the weak interactions among molecules. Despite the remarkable research achievement on organic material-based storage, there are important limitations that prevent the further improvement of the performance of data storage. The recent developments in DNA-based nanotechnology have brought new opportunities and challenges for the development of high density data storage devices. In this project, novel molecular system with both assembly and optic/electric-responsive properties would be designed from the point of view of the relationship between chemical structure and property. Utilizing the unique molecular recognition capabilities of DNA, the functional groups would be assembled in a controlled manner to improve the efficiency of charge transfer, fluorescence resonance energy transfer (FRET), etc. That would further improve the the integrated storage properties, such as storage density, responsive speed, reliability, stability and signal-to-noise ratio (SNR). This research would provide important theoretical support and technical guarantee for the future development of data storage devices, and would set up a solid foundation for keeping our own characteristics and predominance, and form the theory and technology owning independent intellectual property right in the future competition in information technology.
信息社会的飞速发展对信息存储的要求越来越高。高质量的信息存储介质是实现高密度信息存储的关键。近年来,新型存储技术和介质不断涌现,其中基于有机材料的信息存储介质受到了极大的关注。尽管取得了许多重要进展,但由于分子之间相互作用较弱,难以得到大范围的有序薄膜,难以控制活性中心的组装,这极大限制了信息存储性能的进一步提高。高速发展的DNA纳米技术为高密度信息存储器件的研究带来了新的机遇。本项目我们将从分子结构和功能关系的角度出发设计既有组装性能又有光、电响应性能的新型有机功能分子体系。利用DNA片段的组装性能将功能基团控制组装,以提高其电荷转移、荧光共振能量转移等效率,从而提高信息存储的密度、响应速度、可靠性、稳定性、分辨率等综合性能。研究将为分子信息存储器件的发展提供重要理论支撑和技术保证,对于保持我国在此领域的特色和优势,为在未来信息技术的竞争中形成具有我国自主产权的理论和技术打下基础。
信息社会的飞速发展对信息存储的要求越来越高。高速发展的DNA纳米技术为高密度信息存储器件的研究带来了新的机遇。本项目我们从分子结构和功能关系的角度出发设计了一系列既有组装性能又有光、电响应性能的新型分子开关体系。利用DNA片段的组装性能将功能基团控制组装,提高其电荷转移、荧光共振能量转移等效率,实现开关分子的高性能转换,并研究将这些分子开关用于信息存储、特定序列DNA的检测、药物控制释放等性能研究。本项目按计划进行,在开关分子的制备及应用研究方面取得了一些重要的进展。已发表SCI论文14篇,另正在投稿论文2篇。其中包括ACS Nano,Small,ACS Applied Materials & Interfaces,Chemistry - A European Journal等影响因子大于5的文章5篇。申请专利3项,并均已获得授权。参加国际国内会议8人次。本项目培养硕士研究生4人,博士研究生4 人。研究将为分子信息存储器件的发展提供重要理论支撑和技术保证。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于DNA纳米技术的信息存储系统研究
基于DNA纳米技术的探针机智能存储系统研究
基于有机单晶纳米线的高密度信息存储研究
基于新型rotaxane 分子薄膜的超高密度信息存储