hermoelectric generators, which directly convert heat into electricity,have long been applied in a variety of situations relegated applications. They benefits in small,light , no mechanical transmission, noiseless, no pollution, long life and easy control,etc. Thermoelectric materials were the core of these generators. Although these devices can be very reliable and compact,thermoelectric device performance determined by the phonon transport,the charge carriers (electrons and holes) and their interactions. The problems exist in high output resistance and adverse thermal characteristics. Ther are plentiful of experimental work focus on enhancing there performance,especialy in transport properties of the nanocomposite low-dimensional thermoelectric materials. Much less in doped theory,especifically theory for the thermoelctric materials within a second nanophase which is useful in anticipating new kind of high performance thermoelectic materials. The aim of this project is going to investigate the electronic, transport and other physical properties of typical thermoelectric materials with the second nanophase from first-principles calculations based on DFT , especially the link between the typical nano-second-phase composite structure of skutterrudite system thermoelectric materials along with the electrical transport properties. In particularly, the nano configuration, composition, and concentration of the composite structure due to the modulating mechanism. These work may provide a theoretical guide for experimental research and industrial applications.
利用热电材料制成的发电系统由于其体积小,重量轻,无任何机械传动部分,工作中无噪音,不造成环境污染,使用寿命长且易于控制等特性而成为研究热点。热电器件性能优秀与否由组成该器件材料中的载流子和声子输运及其相互作用决定。目前研究低维化纳米复合热电材料的输运性能实验工作有较多的成果但是理论体系专门针对具有复合纳米结构尤其是一维复合结构的研究报道偏少,指导和预期实验方向的理论依据略显单薄。本项目希望通过采用基于密度泛函理论的第一性原理计算方法,获得典型纳米复合结构(以半海斯勒体系/铋化物体系/方钴矿体系等为基础)的热电材料的电输运性能与其纳米复合结构之间的联系,进一步获得纳米复合结构的微观构型、组分、浓度对材料热电性能的调制机理,为实验研究和工业应用提供有效依据。
本项目系统研究了热电材料Half-Heusler体系及其等电子掺杂情况、低维情况以及低维复合结构下的电子结构和输运性能。等电子掺杂对这两个体系的带隙和电子结构的影响不显著,在声子输运性能方面,M位原子质量越大,晶格振动频率越小。对于其等电子掺杂体系,当掺杂原子质量大于M位原子时,可以降低声学波声子速度,从而降低half-Heusler体系的晶格热导率。此外,我们还研究了不同掺杂浓度的Sb位和Ti位掺杂的TiCoSb系统的电子结构。预测不同掺杂元素和掺杂浓度对TiCoSb体系热电性能的影响,减少实验研究上人力和物力的消耗。对于该系列化合物及其等电子掺杂体系,我们设计并研究了其不同厚度、不同表面原子的二维层状结构。结果表明,所有二维层状结构在费米能级附近的态密度梯度和峰值均明显高于块体材料,且该态密度峰值随着层厚度的增加而逐渐降低。低维层状结构研究结果表明,在(100)方向上的二维结构表现出金属性,而在(110)方向上的二维结构表现出半导体性,且其带隙值显著低于块体结构。而在等电子掺杂低维结构的表面为(010)面的二维层状结构中存在很窄的带隙。表面原子和层厚度对二维结构在费米能级附近的电子结构的影响是显著的,结构低维化有助于提高材料的电输运性能。此外,二维体系的声学波声子速度显著低于三维结构,说明二维结构具有较低晶格热导率。
{{i.achievement_title}}
数据更新时间:2023-05-31
磁性纳米复合热电材料的磁电效应和热电性能提升研究
氧化锌基纳米复合高温热电材料热导及热电性能调控的研究
由界面工程制备高性能纳米复合Skutterudite热电材料及性能研究
Mn4Si7基热电材料的纳米复合及其性能增强机理研究