Catalytic materials have shown considerable promise for applications in the areas of industrial production, pharmaceutical synthesis, environmental pollution control, energy, and so on. With the profound research of POM chemistry and the urgent requirement of science development, it is challengable but meaningful that the exploration of multifunctional TMSPs catalytic derivatives as well as the investigation of the catalytic mechanism in detail which is the key points in these catalytic materials. This project focuses on design syntheses, properties and electrocatalytic water oxidation、thioethers oxidation、alkene epoxidation mechanisms of catalytic functional materials based on zirconium substituted polyoxotunstates. By the routine conventional aqueous solution method, one-pot or step-by-step assembly process under hydrothermal conditions, a series of catalytic materials can be obtained by combining the diverse lacunary POT starting materials, various organic aromatic ligands, and zirconium-metal ions by the synergies of the moieties or intercomponent energy transfer. These compounds were characterized by elemental analyses, IR spectra, diffuse reflection spectra, thermogravimetric (TG) analyses, X-ray single-crystal diffraction, and so on. Furthermore, it is noted that we will apply the research methods of electrochemistry method、density functional theory、nuclear magnetic resonance and gas chromatograph to study these physical processes in zirconium-substituted polyoxotunstate-based catalytic materials at the atomic and molecular levels, including electrocatalytic water oxidation, thioethers oxidation, alkene epoxidation mechanisms of catalytic reaction, and so on. In a word, all these not only provide us basic services to exploit and develop polyoxotungstate-based catalytic materials, but also accumulate experience for the structural design and controllable synthesis of catalytic materials.
催化材料在工业生产、药物合成、环境污染治理、能源等领域都表现出巨大的应用前景。随着金属-氧簇化学的迅猛发展,近年来合成过渡金属取代并在催化方面有卓越性能的新型钨-氧簇合物是一个很有意义并富有挑战的课题。本申请项目主要围绕锆取代型钨-氧簇基催化材料的设计合成,性能表征以及在电催化产氧、催化硫醚氧化及烯醇环氧化方面展开工作,重点是采用常规水溶液法、一步或多步水热等方法通过锆金属离子、缺位钨-氧前驱体以及有机配体的“协同作用”,制备性能优良的催化材料,并结合电化学方法、密度泛函理论(DFT)计算、核磁共振及气相色谱仪等研究手段,对其在不同溶液中的产氧能力、催化硫醚氧化以及烯醇环氧化有机反应的催化效率和循环性能进行较为系统的研究和探讨,从原子、分子层次上研究钨-氧簇基催化材料的催化机理,进而为锆取代型多酸基催化材料的开发研制以及功能材料的结构设计与可控合成提供重要的理论知识和参考意义。
本项目主要围绕锆取代型钨-氧簇的设计合成,性能表征以及在电催化、硫醚催化氧化等方面展开工作。研究内容主要包括:在水热条件下,通过锆金属离子、缺位钨-氧前驱体以及有机配体或者无机基团的“协同作用”,合成了一系列具有新颖结构的锆取代的钨-氧簇,解析晶体结构并对其硫醚催化氧化性质进行研究。探索锆源、反应时间、温度及反应体系的pH等对锆取代的钨-氧簇结构的影响,总结结构与硫醚催化氧化间的构效关系,从而筛选具有良好催化氧化硫醚性能的锆取代的钨-氧簇。此外,在完成项目工作外,还积极开展多酸基无机-有机杂化材料的合成及催化性能研究。本项目的完成对新体系的开发和新型催化材料的发现和利用具有重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
锆氧簇取代的钨氧簇的缺位导向合成、结构及性能
镍/铜取代型钨-氧簇有机骨架的合成及其催化性质研究
取代型金属氧簇的合成、结构及催化性能研究
新型有机锡氧簇合物的设计合成及催化性质和机理研究