Due to the high sensitivity, fast response, low power, and small size, micro/nano semiconductor resistive gas sensors have great potential for the application in the field of aerospace. However current gas sensors can hardly meet the requirements of high sensitivity, high reliability, high selectivity, and fast response for the reasons: optimization of micro structure is not good enough, activity of the nanomaterials is difficult to guarantee, the combination of micro- and nano- structure is not good, controllability of micro/nano fabrication process is low. In this project, we will introduce a novel micro/nano fused structure by combining micro-hot-platform and ordered porous nano sensitive film. And we will also develop a sensor fabrication technology of template transfer micro/nano fusion. Through the research on the key scientific issues of the surface/interface behavior during the fabrication and working time, as well as the surface activity and its control of the nanostructured array, the principles between the structure and process parametars will be investigated. To explore the application of micro/nano gas sensors in the field of aerospace, the impact of environment on the sensor performances will be conducted. This project will lay foundations for high performance gas sensors with the ability of batch production. And it will also provide a reference for the application of micro/nano gas sensors in the field of aerospace.
微纳融合的半导体电阻式气体传感器因其高灵敏、快响应、低功耗和小尺寸等特点,在航空航天气体检测领域内有很大的应有潜力。在目前此类传感器中,微结构优化不够深入,纳米材料活性难以保证,微纳结构结合不好,微纳制造工艺可控性差,难以满足高灵敏度、高稳定性、高选择性、快速响应的需求。本项目提出一种结合微型加热平台和有序多孔纳米敏感膜的传感器结构,发展一种模板转移微纳融合制造方法实现传感器制造。通过研究MEMS结构和有序纳米阵列融合制造中的界面转换及过程控制,有序纳米阵列的表面活性控制等关键科学问题,来研究传感器结构参数和工艺参数与传感器性能间的关联性。通过研究空间环境变化对传感器性能的影响来探索微纳融合气体传感器在航空航天领域内的应用。本项目为实现高性能、可批量制造的高端气体传感器奠定坚实的技术基础,同时也将为微纳融合半导体电阻式气体传感器在航空航天领域内的应用提供借鉴和案例。
微纳融合的半导体电阻式气体传感器因其高灵敏、快响应、低功耗和小尺寸等特点,在航空航天气体检测领域内有很大的应用潜力。然后在此类传感器中,微结构优化不够深入,纳米材料活性难以保证,微纳结构结合不好,微纳制造工艺可控性差,难以满足高灵敏度、高稳定性、高选择性、快速响应的需要。本项目主要研究了(1)微型加热平台的结构设计和优化,(2)有序纳米敏感膜的结构参数与传感器性能的关联性,(3)纳米材料种类与传感器性能的关系。提出了一种结合微型加热平台和有序多孔纳米敏感膜的传感器结构,发展了一种模板转移微纳融合制造方法,实现了微纳融合气体传感器的圆片级批量化制造。本项目通过研究微结构和有序纳米阵列融合制造中的界面转换及过程控制,有序纳米阵列的表面活性控制等关键科学问题,制造了高灵敏的微纳气体传感器。实验结果表明此类传感器对酒精和丙酮等气体具有很高的灵敏度,检测下限达到20ppb。本项目为实现高性能、可批量制造的气体传感器奠定坚实的技术基础,同时也将为微纳融合半导体电阻式气体传感器的应用提供了借鉴和案例。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
多构型周期性金属纳米结构的微纳融合制造及其SPR耦合效应研究
分子印记表面增强拉曼的微纳传感器研究及其在农药残留检测中应用
飞秒激光微纳加工在高性能微光学元件制造中的应用基础研究
高选择性有机单晶微纳场效应晶体管气体传感器及其响应机理研究