Transition metal compounds have attracted much attention due to their potential applications for replacing noble metal as important catalysts in the energy conversion and storage, hydrogen production, organic matter decomposition and pollution control. The catalytic activity is an important benchmark parameter evaluating the catalysts, which is decided by the electronic structure and interface properties of the catalysts. In this regard, understanding of the catalytic reaction mechanism at the liquid/solid interface is highly desired for the R&D of new catalysts. For this end, we will use an in-situ chemical co-precipitation method to design and synthesize a series of novel W-, Mo-, Nb- and Ta-based dual-metal oxides, which will be firstly applied as counter electrode (CE) catalysts in new generation dye-sensitized solar cells (DSC), and a systematic investigation of “composition-fabrication-structure-efficacy” will be performed based on the correlation of electrocatalytic properties with electronic structure of CE catalysts. Through first-principles density functional theory (DFT) and ab initio Car-Parrinello molecular dynamics (CPMD) calculations, combined with modern technologies of surface analysis, photovoltaic tests and electrochemical impedance spectroscopy(EIS), from macro- to atomic-levels, the transport properties of electron and ions at the electrolyte/CE interface is revealed, the relationship between the electronic structure and the catalytic activity of CE materials in DSC is simultaneously clarified, the synergistic catalytic mechanism of dual-metal oxides as catalysts in DSCs is subsequently established, structural design and functional modification of novel dual-metal oxides can be finally realized on an atomic and molecular level. A new method of the controlled preparation and optimized performance for dual-metal oxides will be further explored so that the work performance of CE in DSC devices can be improved by leaps and bounds. Once this project is successfully put into force, which will provide a new train of thought for nitrides, carbides and sulfides in the process of investigation of controlled preparation, optimized performance and catalytic mechanism, and which will also provide the scientific theory guidance and technique support for the commercialization of catalysts to promote the high-speed development of new solar cells.
过渡金属化合物近年来已成为可替代贵金属的重要催化剂而倍受关注。催化活性是评价催化剂性能的重要指标,取决于催化剂的电子结构和界面特性。鉴于对催化机理认识的迫切需求,本项目拟采用原位共沉淀法合成一系列新型钨钼铌钽基双金属氧化物(DMO),首次提出将DMO作为DSC对电极,围绕“组成-构筑-结构-功效”进行一体化调控,开展电子结构/催化性能相关性的机理研究。采用第一性原理计算和分子动力学模拟,结合现代表面分析技术、光伏测试和阻抗谱技术,从宏观至原子水平揭示电子、离子在电解液/对电极两相界面的传输特性,阐明电子结构与催化性能的关系,建立DMO材料的协同催化机制;从原子分子水平上实现DMO的结构设计与功能调控,探索DMO可控制备和性能优化微观调控的新方法以大幅度提高对电极的整体工作性能,为商业化应用提供理论指导和技术支撑,并为氮化物、碳化物、硫化物等可控制备、性能优化、催化机制的研究提供一个新思路。
太阳能作为资源最丰富的可再生能源,其开发利用成为近年来十分重要的研究课题。.新一代的太阳能电池已成为继硅基和薄膜太阳能电池之后该领域最重要的研究方向。.开发原创型太阳能电池及关键新材料是该领域的研究热点和未来的发展趋势。..催化活性是评价催化剂性能的重要指标,取决于催化剂的电子结构和界面特性。鉴于对催化机理认识的迫切需求,本项目成功合成了一系列新型钨钼铌钽基对电极催化材料体系并应用于新一代太阳能电池DSC,研究构建这类新型电催化材料的工艺特点和技术路线,进一步探索可控制备和性能调控的技术途径,探究多层次协同调控、性能优化的技术途径,获得的器件性能指标优于贵金属Pt对电极的性能指标,即:Jsc ≥ 14.5 mA cm-2;FF ≥ 0.65;Voc ≥ 0.70 V。..采用第一性原理计算和分子动力学模拟,结合现代表面分析技术、光伏测试和阻抗谱技术,从宏观至原子水平研究了电子离子在电解液/对电极两相界面的传输特性,阐明了电子结构与催化性能的关系,查明了构建高效低成本双金属氧化物对电极催化材料的新途径,为深入理解催化机制提出了一种普适策略,从原子分子水平上,实现了对催化材料进行整体协调的结构设计与功能调控。..项目的成功实施为未来新型催化材料的可控制备、性能优化、催化机制研究提供一个新思路,开辟一个新的研究方向,为商业化应用提供理论指导和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
双吸离心泵压力脉动特性数值模拟及试验研究
铌(钽)酸盐/氮化碳复合纳米片分解水制氢催化剂的构筑及其催化机理研究
我国几种稀土铌钽系列新矿物及晶体化学研究
CMF基双金属氧化物-石墨烯复合负极材料的可控构筑及电化学协同储锂机制研究
我国主要铌钽矿物的晶体化学研究