Macro-micro precision control of electromagnetic incremental forming of aluminum large thin-walled curved surface component, is a key scientific and technological problem urgently to be solved for high-performance light-weight integrated forming of shape and properties of this component, and is also a challenging task in the international frontier of the plastic processing field. Based on the train-of-thought of decoupling analysis, through-process modeling and macro-micro coordinated control of the multi-field-coupled complex dynamic deformation process, the stress responses, the evolution rules of microstructure and micro-defects evolution and related mechanisms regimes will be revealed within large strain rate range. The preferred deformation condition for improving the forming limit of the material will be obtained. This project also reveals the plastic flow characteristics and mechanisms of aluminum alloy under intense induced eddy current, and the association model between the loading history of induced eddy current and the dynamic stress responses of aluminum alloy will be established. Then, the finite element-boundary element model will be established to predict the through-process deformation and micro-defects in electromagnetic incremental forming of aluminum large thin-walled curved surface component. The relation among processing, deformation and micro-defects will be obtained. The principle of active controlling the temporal and spatial distribution of electromagnetic field to obtain homogeneous strain and micro-defects distribution will be clarified. The method for macro-micro precision control of the electromagnetic incremental forming process will be developed for typical thin-walled curved surface component. This project will provide basis for developing precise and effective integrated forming technique of aluminum large thin-walled curved surface component.
铝合金大型薄壁曲面件电磁渐进成形宏微观精确调控原理与方法研究,是实现其高性能轻量化成形成性一体化制造迫切需要解决的关键科学与技术问题,也是塑性加工学科前沿领域的挑战性难题。为此,本项目提出多场耦合复杂动态变形过程解耦分析-全过程建模-宏微观综合调控的思路,研究揭示大应变率范围内铝合金宏观应力响应、微观组织和微缺陷演化规律与机理,获得提高材料成形极限的变形条件;研究揭示强感应涡流作用下的铝合金塑性流变特征与机理,建立感应涡流加载历史与铝合金动态应力响应的关联模型;研究建立铝合金大型薄壁曲面件电磁渐进成形全过程变形-微缺陷预测有限元-边界元仿真模型,揭示成形工艺-宏观变形-微观缺陷的关联关系;研究阐明主动调控电磁场时空分布获得均匀应变和微缺陷分布的原理,发展典型薄壁曲面件电磁渐进成形宏微观精确调控方法。本项目可为发展铝合金大型薄壁曲面件精确、高效、整体成形技术提供指导。
铝合金大型薄壁曲面件电磁渐进成形宏微观精确调控原理与方法研究,是实现其高性能轻量化成形成性一体化制造迫切需要解决的关键科学与技术问题,也是塑性加工学科前沿领域的挑战性难题。为此,本项目提出多场耦合复杂动态变形过程解耦分析-全过程建模-宏微观综合调控的思路,研究揭示大应变率范围内铝合金宏观应力响应、微观组织和微缺陷演化规律与机理,获得提高材料成形极限的变形条件;研究揭示强感应涡流作用下的铝合金塑性流变特征与机理,建立感应涡流加载历史与铝合金动态应力响应的关联模型;研究建立铝合金大型薄壁曲面件电磁渐进成形全过程变形-微缺陷预测有限元-边界元仿真模型,预测误差低于12%,揭示成形工艺-宏观变形-微观缺陷的关联关系;研究阐明主动调控电磁场时空分布获得均匀应变和微缺陷分布的原理,发展典型薄壁曲面件电磁渐进成形宏微观精确调控方法,提出了分阶层多工位电磁渐进成形新方法,用ϕ260mm 线圈非接触直接成形了ϕ1500mm 铝合金贮箱箱底缩比件,突破了电磁场只能作为辅助能场的传统认识。本项目为发展铝合金大型薄壁曲面件精确、高效、整体成形技术提供指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向工件表面缺陷的无监督域适应方法
零样本学习综述
基于关系对齐的汉语虚词抽象语义表示与分析
金属锆织构的标准极图计算及分析
基于卷积神经网络的链接表示及预测方法
大型薄壁异型曲面旋压不均匀变形机理与精确成形调控
大型铝合金件的电磁力渐进推拉复合成形的材料变形行为研究
高强铝合金薄壁高筋大型壁板精确成形制造技术基础
强电磁脉冲载荷作用下铝合金塑性成形宏微观本构关系和断裂机制及其在大型复杂厚板件电磁成形中的应用