关于几类二分量非线性波方程的行波解的研究

基本信息
批准号:11901215
项目类别:青年科学基金项目
资助金额:22.00
负责人:梁建莉
学科分类:
依托单位:华侨大学
批准年份:2019
结题年份:2022
起止时间:2020-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:
关键词:
分支行波解非线性波方程动力学行为
结项摘要

Investigating the exact solution and dynamic behaviors of nonlinear wave equations plays an important role in the mathematical physics. In this project,we mainly focuses on several types of two-component nonlinear wave equations,and their traveling wave solutions and their dynamic behavior are comprehensively studied and comparatively analyze. Based on the bifurcation theory of dynamical systems, combined with the first integral and phase portraits of integrable traveling wave systems,the bifurcation and exact solutions of several classes of two-component nonlinear wave equations are studied. Meanwhile, by means of Bäcklund transformation, some multi-soliton solutions of two-component nonlinear wave equation are constructed and the dynamic properties of the solutions are analyzed. Finally, the representations and properties of the exact solutions in several cases, such as the same type of exact solutions of different systems and the same exact solutions of the same system with different expressions and waveforms, are compared and analyzed. The algebraic properties, geometric structures and dynamic behavior of these traveling wave solutions are discussed, and the internal relations between the exact solutions of several kinds of equations and the dynamic behavior, as well as the causes and physical significance of the solutions are clarified.

非线性波方程的精确解及其动力学性质是数学物理中一个重要的研究课题。本项目将围绕几类二分量非线性波方程,对其行波解及其动力学行为进行综合研究与比较分析。应用动力系统分支理论,结合可积行波系统的首次积分和相图,研究几类二分量非线性波方程的分支和精确解及其动力学性质;借助Bäcklund变换,构造某些二分量非线性波方程的多孤子解,并分析其动力学性质。最后,比较分析几种情形下精确解的性质和形式,如不同系统的同一类精确解,以及同一系统具有不同表达方式和波形图的同一类精确解等,探讨研究这几类行波解的代数性质、几何结构和动力学行为,理清几类方程精确解和动力学行为的内在联系,以及解产生的原因和物理意义。

项目摘要

非线性波方程的精确解及其动力学性质是数学物理中一个重要的研究课题。本项目通过动力系统分岔理论和奇行波方程理论,对一些非线性波方程的行波解及其动力学行为进行综合研究与比较分析,包括旋转Camassa-Holm方程、一类具有Conformable分数阶导数的三阶mKdV方程、一类非局域流体动力学方程、非局部Fokas-Lenells方程、复杂Ginzburg-Landau方程和具有反立方非线性项的Raman孤子模型。将奇行波方程理论和奇异摄动理论相结合,研究了Degasperis-Procesi方程的精确行波解,并通过Melnikov方法研究方程对应的扰动系统的孤立波解的存在性。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

宽弦高速跨音风扇颤振特性研究

宽弦高速跨音风扇颤振特性研究

DOI:
发表时间:2021
3

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
4

敏感性水利工程社会稳定风险演化SD模型

敏感性水利工程社会稳定风险演化SD模型

DOI:10.16265/j.cnki.issn1003-3033.2021.04.003
发表时间:2021
5

动物响应亚磁场的生化和分子机制

动物响应亚磁场的生化和分子机制

DOI:10.13488/j.smhx.20190284
发表时间:2019

梁建莉的其他基金

相似国自然基金

1

几类非线性扰动微分方程的行波解

批准号:11871251
批准年份:2018
负责人:杜增吉
学科分类:A0301
资助金额:50.00
项目类别:面上项目
2

关于某些方程的非线性波解的研究

批准号:11226159
批准年份:2012
负责人:傅仰耿
学科分类:A0303
资助金额:3.00
项目类别:数学天元基金项目
3

关于非线性微分方程孤立波解的研究

批准号:10701076
批准年份:2007
负责人:赵俊霄
学科分类:A0308
资助金额:16.00
项目类别:青年科学基金项目
4

几类奇异非线性波方程的特殊解及其分支

批准号:11626129
批准年份:2016
负责人:潘超红
学科分类:A0301
资助金额:3.00
项目类别:数学天元基金项目