Meteorological information detection based on Internet of things has important applications in the field of precision agriculture, intelligent transportation and other fields. Based on robust ultra-low power thermal wind sensor scheme formed by low temperature co-fired ceramic / silicon, multi field (thermal / electrical / fluid / solid) coupling analysis will be carried out in this project combined with the chip scale package, package system and working mode. A complete thermal analogy model will be built by wind vector and environment temperature as the input conditions to analyze the relationship among the sensitivity and power consumption of the sensor and the structure shape and parameters. Silicon / Ceramics LTCC technology, the relationship between the material formula and Ceramic / Silicon Sintering stress will be studied and optimized. The effect of thermal shock and rain environment factors on the reliability and stability of the sensor are studied. Low power driving circuit and algorithm design will be carried to control the overall system power consumption. The working life is the key to the wireless sensor node of the Internet of things. The work window scheduling algorithm of the wind sensor module and the wireless communication module will be studied, the sensing data compression algorithm and the solar energy / wind energy utilization method and so on will be researched. The results of this project will promote the application of the thermal wind sensor in the Internet of things, and can be used as reference for other related research.
物联网气象探测在精准农业、智能交通等领域有重要应用。本项目以硅/陶瓷低温共烧形成高鲁棒性的超低功耗热式风传感器方案为基础,结合芯片级封装、系统封装以及工作模式,开展热/电/流/固多场耦合的理论分析,建立以风矢量和环境温度为输入条件的完整热电类比电路模型,研究传感器的灵敏度、功耗与结构形状和参数的关系;研究硅/陶瓷的低温共烧工艺、材料配比与陶瓷/硅烧结应力的关系并进行工艺优化;开展热冲击和雨雪等环境因素对传感器可靠性和稳定性的影响研究;结合上述研究,开展低功耗电路和算法设计,实现系统总体功耗控制;物联网无线风传感节点的续航至关重要,项目将开展风传感模块和无线通讯模块的工作窗口调度算法、传感数据压缩算法及太阳能/风能辅助利用方法等研究,实现无线节点的长续航。本项目的研究结果将促进热式风传感器在物联网的应用并对其他相关研究有借鉴作用。
气象探测在精准农业、智能交通等领域有重要应用。本项目重点开展面向物联网应用的超低功耗MEMS热式风速风向传感器关键技术研究。围绕这些应用的低功耗要求,项目从传热学基本理论出发,结合传感器的结构和工作原理,开展了材料、芯片结构和封装相关的理论建模和有限元仿真,获得了传感器性能与关键参数之间的理论公式模型,可以从物理上清晰地通过调整关键参数以达到合适的性能要求。为了保证性能的基础上获得超低功耗要求。项目基于上述完整模型,借助有限元仿真和实验验证,在芯片隔热槽设计、圆片级陶瓷封装方案和芯片注塑包封一体化系统级封装方案等获得突破,有效解决了传感器高性能和低功耗的设计问题,完善了MEMS热式风速风向传感器的设计方法、固化了传感器的加工和封装方案,通过传感器芯片、封装和软硬件测量驱动系统的一体化设计、实现了超低功耗MEMS热式风速风向传感器的设计与制造,并以此为基础,结合无线物联网风传感器节点软件算法,实现了低功耗驱动与测试、无线物联网无线风节点可行方案,为传感器的设计与工业化应用奠定了理论和技术基础。项目在实施过程中,培养了1名博士和3名硕士(已毕业),目前在读博士2名,硕士3名;发表行业顶级期刊论文4篇,申请专利5项;获教育部技术发明一等奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
掘进工作面局部通风风筒悬挂位置的数值模拟
面向物联网的混合式无线传感网容侵结构及关键技术研究
面向节点移动的无线多媒体传感器网络路由算法研究
面向物联网应用的基于认知功能与传感器节点分离的认知传感器网络关键技术研究
面向风电监测的认知无线传感器网络的APTEEN路由协议及其优化研究