The hybrid high-voltage direct current (HVDC) transmission system with a line commutated converter (LCC) on the rectifier side and a voltage source converter (VSC) on the inverter side combines the advantages of the two kinds of converter. It can avoid the commutation failure completely and has a broad application prospect in our country. Faults on overhead transmission line of hybrid HVDC system are usually instantaneous, under which the dc system need not to be shut down. Therefore, the correct identification of dc transmission line fault can decrease the shutdowns and improve the reliability of the system. However, the transmission line fault distinction principles of LCC-HVDC and VSC-HVDC system cannot be applied to hybrid HVDC system directly due to the different converters and asymmetric device configuration at each end of the hybrid HVDC transmission line. In order to solve this problem, this project uses the method combined with digital simulation, theoretical analysis and algorithm study to do the following research: Firstly, this project is to analyze the boundary characteristics on each end of the hybrid HVDC transmission line and study the fault characteristics of internal and external faults. Based on the fault characteristics, transmission line fault distinction principles and criteria are proposed for the rectifier side and inverter side respectively and the corresponding implementation algorithms are designed. Finally, this project is to construct a complete transmission line fault distinction and protection scheme for hybrid HVDC system with principle redundancy and validate the protection principles and algorithms using the simulation data. This project lays the foundation for the development of the protection technology of hybrid HVDC transmission system.
整流侧采用电网换相换流器、逆变侧采用电压源换流器的混合直流输电系统结合两种换流器的优势,可彻底避免传统直流输电系统换相失败问题,在我国具有广阔的应用前景。架空线输电的混合直流输电系统线路故障多为瞬时故障,直流系统无需停运,正确识别线路故障可减少系统停运次数、提高系统运行可靠性。由于混合直流输电系统线路两端换流站不同,一次元件配置不对称,故障后响应不同,不能直接使用两端对称的传统直流或柔性直流输电系统的线路故障甄别原理。本项目采用数字仿真、理论分析、算法研究相互结合的方法,分析混合直流输电系统线路两端边界特性,研究直流线路区内外故障特征,分别针对整流侧和逆变侧提出能够准确识别线路故障的甄别原理和判据,设计实现算法。最终构建一套完整的具有原理冗余的混合直流输电系统线路故障甄别与保护方案,并利用仿真数据验证其有效性。本项目的研究为混合直流输电系统保护技术的发展奠定基础。
高压直流输电是远距离大容量电能输送的一种重要方式,然而受换流器结构的限制,传统高压直流系统存在换相失败等固有缺陷。整流侧采用电网换相换流器(LCC)、逆变侧采用电压源型换流器(VSC)的LCC-VSC混合直流输电系统既能够避免换相失败的发生,同时相较于纯柔性直流输电系统可降低成本,是未来高压直流输电的重要发展方向之一。由于LCC-VSC混合高压直流输电系统两端结构不对称,故障后的特征与传统的直流输电系统相差较大,传统的直流输电线路保护方案在混合直流输电系统中不再适用,因而必须研究适用于LCC-VSC混合高压直流系统的线路保护方案。.本项目针对LCC-VSC混合高压直流输电系统,通过对线路边界的频率特性、线路区内外故障的特征进行深入分析,研究了适用于混合直流输电系统的线路保护原理并构建了完整的保护方案。具体工作如下:.在PSCAD/EMTDC电磁暂态仿真平台建立了详细的LCC-VSC混合直流输电系统电磁暂态仿真模型,并提出了一种模块化多电平换流器的快速仿真模型。.分析了现有高压直流输电系统线路保护在混合直流输电系统中的适应性,指出传统直流输电线路保护应用于LCC-VSC混合直流输电系统中的最大问题在于:当VSC一侧线路限流平波电抗器较小时,整流侧单端量主保护难以区分对端线路区外故障和线路区内末端故障及高阻故障情况。.通过理论推导和仿真实验,对线路两端边界的折反射频率特性、区内外故障特征、线路极间耦合特性进行了深入分析。在此基础上提出了多种利用单极单端信息的故障选极原理和利用双极单端信息的故障选极原理,提出了基于反行波变化量的单端量主保护新原理、基于线模首行波电压回升比的超高速单端量主保护新原理,并提出了基于电流故障分量极性特征的纵联保护和基于混合方向元件的纵联保护作为线路后备保护。仿真测试表明所提的保护原理在速动性、选择性、耐受过渡电阻等方面具有良好的性能,所提超高速单端量主保护新原理的故障选区速度理论上最快仅需数十微秒、且保护性能受过渡电阻影响较小,很好的解决了现有保护存在的问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
针对弱边缘信息的左心室图像分割算法
复杂系统科学研究进展
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于限流级差配合的城市配电网高选择性继电保护方案
特高压直流输电线路继电保护新原理研究
高压直流输电线路时空暂态拟合保护新原理
高压直流输电线路继电保护与故障定位新原理研究
多端柔性直流输电线路暂态保护原理研究