制造汽车保险杠、坦克复合装甲和航天飞船返回仓等需要高吸能性泡沫铝材料,目前工业化生产的泡沫铝材料基体成分相对固定,或脆性大、或强度低,不能完全满足实际需求。本项目拟使用氧化物颗粒和碳纤维作为泡沫铝的增强剂和稳定剂,消除对基体成分的限制,研制使用高性能铝合金制备泡沫铝,利用复合材料基体的高强度和变形时界面的开裂、滑动特性提高泡沫铝的吸能性能,解决高吸能泡沫铝需要同时具备高孔隙率和高强度这一难题。对制备过程中涉及的泡沫稳定机理这一关键问题进行研究,拟通过试验研究和与水溶液泡沫体系的研究结果进行对比,建立具有一般性的理论数学模型,找出影响泡沫稳定性的主要因素,提出提高泡沫稳定性的方法。针对实际应用时泡沫铝需要在不同应变速率下变形,使用准静态和高速压缩实验研究泡沫铝密度、孔结构和基体成分以及应变速率对其吸能性能的影响规律,建立对实际应用有指导意义的基础理论,形成制备高吸能性泡沫铝材料的技术原型。
制造汽车保险杠、坦克车复合装甲和航天飞船返回仓等需要高吸能性泡沫铝材料,目前工业化生产的泡沫铝材料基体成分相对固定,或脆性大、或强度低,不能完全满足实际需求。本项目使用氧化物颗粒和碳纤维作为泡沫铝的增强剂和稳定剂,消除对基体成分的限制,研制使用高性能铝合金制备泡沫铝,利用复合材料基体的高强度和变形时界面的开裂、滑动特性提高泡沫铝的吸能性能。对制备过程中涉及的泡沫稳定机理这一关键问题进行研究,通过建立理论数学模型表述影响泡沫稳定性各因素间的复杂关系,形成了具有一般性的液态金属泡沫稳定理论,找出了影响泡沫稳定性的主要因素,明确了提高泡沫稳定性的方法。制备出了粉煤灰复合,短碳纤维复合,以及铝合金基等多种高系能性泡沫铝材料,压缩强度最高达到14.5MPa,为目前国内外报道的同密度泡沫铝材料压缩强度最高值。并研究了泡沫铝材料在多种变形条件下的吸能机制,载荷形式包括准静态压缩、高温压缩、落锤冲击载荷、霍普金森压杆高速冲击载荷,以及爆炸冲击载荷等。结果表明,碳纤维复合泡沫铝材料对应变速率有一定的敏感性,即随应变速率的增加,其强度和吸能量也随之增加,这主要与复合材料基体内存在大量界面有关。在爆炸冲击载荷下,冲击波在泡沫铝内迅速衰减,且随泡沫铝厚度和密度的增大,衰减速率增大。在进行基础研究的同时,积极推广研究成果在实际应用的设计和研究,设计研究了泡沫铝/铝管复合吸能结构,并将泡沫铝材料适用于新能源校车防撞模块、导弹运输车防地雷底板等多项实际应用研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
卫生系统韧性研究概况及其展望
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
泡沫铝填充薄壁帽型结构吸能特性研究
微孔铝基复合泡沫夹层板动力响应及吸能特性研究
功能梯度泡沫材料缓冲吸能特性及优化设计研究
铝基复合泡沫填充管结构爆炸冲击破坏机理及吸能性能研究