Precision modified gears are the key components in advanced mechanical equipment. The error source of tooth surface is complex in the five-axis continuous generating grinding process and the error compensation is difficult to meet with the requirements of high efficiency, high precision, and short period. Some error subduction technologies such as high precision machine tools and thermal controlling environment remarkably increase the cost of gear production. Based on the point-vector group envelope theory of tooth surface generation and the error compensation of synchronized axis which are proved, the traceability mechanism of the error in the process of continuous generating grinding and the key scientific problems of equivalent compensation are studied in this research. Firstly, an error evaluation model based on the characteristics of tooth surface generation is established to achieve the representation of the whole tooth surface error with the machining contact trace. Next, the digital generation principle of tooth surface in the continuous generating grinding is studied and the coupling model including the errors of the tool, trajectory, and work piece is established to reveal the mapping law between tooth surface error and generation motion error; Then, the decoupling method for the generation model is studied to realize equivalent error compensation based on the virtual axis function by separating the tool error and simplifying traceability of five-axis trajectory error with two axes. Finally, an error compensation system is developed and the experimental verification is performed. The study of this project provides the principle and method of motion geometry support for machining error compensation of continuous generating grindingand it has important social and economic value for breaking the monopoly of foreign high-end gear grinding machines and raising the domestic level of advanced gear manufacturing.
精密修形齿轮是高端机械装备极其重要的基础件,其齿面五轴联动蜗杆砂轮磨削加工误差来源复杂,高效、高精、短周期的误差补偿要求难以满足,高精度机床和温控环境等误差消减“硬技术”显著增加制齿成本。本项目基于前期探明的齿面创成点矢量族包络原理及齿轮机床同步轴误差补偿机理,针对齿面蜗杆砂轮磨削加工误差溯源机理及等效补偿的关键科学难题开展研究。建立基于齿面创成特性的误差评定模型,实现全齿面误差的加工接触迹表征;研究蜗杆砂轮磨齿的数字化计算原理,建立叠加刀具-轨迹-工件误差的齿面创成耦合模型,揭示齿面误差与创成运动误差的映射规律;研究创成模型的解耦方法,通过刀具误差分离及五轴轨迹误差的两轴溯源,实现基于虚拟轴的等效误差补偿;研制误差补偿系统并进行实验验证。项目研究为蜗杆砂轮磨齿加工误差补偿提供运动几何学原理与方法支撑,对于打破国外高端磨齿机垄断,提升我国高端齿轮制造水平,具有重要的社会和经济价值。
本项目针对齿面蜗杆砂轮磨削加工误差溯源机理及等效补偿的关键科学难题开展研究。建立基于齿面误差测点的误差曲面拟合模型,研究齿面误差评定方法;基于蜗杆砂轮磨齿的数字化计算原理,建立叠加刀具-轨迹-工件误差的齿面创成耦合模型,揭示齿面误差与创成运动误差的映射规律;研究齿面误差解耦方法,分离蜗杆砂轮磨削加工过程中的刀具误差及轴运动误差,实现等效误差补偿;研制蜗杆砂轮磨削加工误差补偿系统并进行仿真与实验验证,并通过误差补偿系统的研制实现了研究成果转化。依托本项目,正式发表EI/SCI论文13篇,CSCD论文2篇,网络出版SCI论文1篇,授权发明专利5项,公开发明专利6项,授权软件著作权2项,出版学术专著1本。项目研究为蜗杆砂轮磨齿加工误差补偿提供了运动几何学原理与方法支撑,对于打破国外高端磨齿机垄断,提升我国高端齿轮制造水平,具有重要的社会和经济价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
五轴联动机床几何误差一次装卡测量方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
双粗糙表面磨削过程微凸体曲率半径的影响分析
基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断
基于生态系统服务流视角的生态补偿区域划分与标准核算--以石羊河流域为例
面齿轮蜗杆砂轮磨齿加工误差与齿面热损伤机理研究
基于全齿面分区修形的螺旋锥齿轮双重螺旋加工方法研究
基于加工中心的螺旋锥齿轮“全齿面主动修形”策略与方法研究
多因素耦合剃齿齿形"中凹"误差机理与剃齿刀修形曲线研究