The heat can be directly converted into electricity through thermoelectric (TE) generation (TEG). TEG technology has many advantages and become an effective approach to harvest the renewable heat source and unrecovered waste heat. TEG performance, including functionality and practicability, largely depends on the structure geometry of TE device in addition to rely on the inherent Figure-of-Merit of TE materials because the electric resistance, electric current density and heat utilization rate are affected by the geometric parameters of TE device to decide the functional indicators, such as output power and conversion efficiency. On the other hand, the internal stress and thermal deformation caused by the non-homogeneous temperature and heat flux are also affected by these parameters to govern the practical indicators, such as stress and strain concentrations, thermal fatigue, operation stability and life-span of TE device. Here the various factors affecting the structure design of TE device are taken into account comprehensively and are summarized as structural parameters and operating conditions to build a relationship with functionality of TE device, as well as the practicability are considered simultaneously, to investigate the fundamental aspects on structure design for TE device with high performance. The synchronous trends of electromotive force, electric current, output power and conversion efficiency as well as temperature, heat flux, internal stress and thermal deformation are analyzed in detail by using finite-element method for TE device with different shapes, geometries and configurations under diverse operating conditions. The fundamental principles for structure design of TE device with high performance can be proposed subsequently based on the simulation results. The optimal structure geometry of TE device can be determined in combination with the specific operating conditions. Further, a structure database of TE device can be constructed. The achievements of this fund project lay a theoretical foundation and provide a physical-model reserve for the design and fabrication of TE device with high performance and the large-scale application of TEG technology.
热电发电技术将热能直接转化为电能,是可再生资源利用和余废热回收的有效手段。热电发电性能除取决于热电材料优值,很大程度依赖于热电发电器件结构,器件结构不仅影响电阻、电流密度和热利用率,决定着发电功率和热电转换率等功用性指标,还影响器件因温度和热流不均引发的内应力和热变形,决定着应力和应变集中、热疲劳及运转稳定和使用寿命等应用性指标。本项目综合考虑影响热电发电器件结构设计的众多因素,凝练为直接决定功用性的结构参数和环境条件,同时兼顾器件结构的应用性,以高性能热电发电器件结构设计为研究主线,采用数值模拟方法,分析多外形、多尺寸和多配置器件处于多样环境时,其电压、电流、发电功率和热电转换率及温度、热流、内应力和热变形等同步变化规律,基于此阐明高性能热电发电器件结构设计原理,确定多样环境条件时最优器件结构,建立结构数据库,为高性能器件结构设计和制造及热电发电技术规模化应用奠定理论基础和提供模型储备。
热电发电技术将热能直接转化为电能,是可再生资源利用和工业余废热回收有效手段。热电发电性能很大程度依赖于热电发电器件结构,器件结构不仅决定发电功率和热电转换率等功用性指标,还影响应力和应变集中、热疲劳及运转稳定和使用寿命等应用性指标。本项目以高性能热电发电器件结构设计为研究主线,分析多外形、多尺寸和多配置器件处于多样环境时,其电压、电流、发电功率和热电转换率及温度、热流、内应力和热变形等同步变化规律,基于此阐明高性能热电发电器件结构设计原理,确定多样环境条件时最优器件结构,建立结构数据库,为高性能器件结构设计和制造及热电发电技术规模化应用奠定理论基础和提供模型储备。截至目前,本项目研究目标基本完成,国际期刊发表SCI检索学术论文8篇,影响因子累计28.125,其中JCR一区5篇,授权国家发明专利5项,获批软件著作权1项,培养博士研究生3人和硕士研究生8人,获辽宁省优秀硕士学位论文奖1次和东北大学优秀硕士学位论文奖1次,获辽宁省普通高等学校优秀毕业生荣誉称号1人,参加国际学术会议8次和国内学术会议3次,其中国际学术会议分会主席2次,国际学术会议特邀报告1次,分组报告3次,墙报展示7次,并参加国家自然科学基金项目研究进展交流会1次,到会墙报展示项目研究进展并参加项目间学术交流。此外,基于本项目新型热电发电器件结构,研发出新型高效热电发电装备,用于高温工业制造流程余废热回收利用,该装备受到工业界关注和认可,2019年申请人已与辽宁省2家工业企业达成技术合作协议,其中签订技术开发合同1次,技术作价投资并拟专利转让1次,基于此申请人获市级杰出创业人才奖励1次(已公示),未来该设备仍将作为本项目重要研究成果向可再生资源利用和工业余废热回收领域推广应用,并酌情应用于国防。限于4年期限,本项目研究仍不够完善,亟待持续深入,后续还将产生一系列研究成果,通过技术转化应用,创造更多社会和经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于SSVEP 直接脑控机器人方向和速度研究
钢筋混凝土带翼缘剪力墙破坏机理研究
双吸离心泵压力脉动特性数值模拟及试验研究
掘进工作面局部通风风筒悬挂位置的数值模拟
基于高取向纳米结构设计的热电材料及其器件集成
高性能热电器件设计原理与集成技术关键科学问题研究
可控大变形高性能柔性可延展电子器件结构设计力学
太阳能热电—光电复合发电技术及其关键材料的基础研究