In order to improve the mechanical performance and the monitoring precision of the structure in service, the methods of enhancing interfacial combination for embedded silica-optical fiber and the hosting composite structure will be studied from the point of microscope. Based on the compatibility studied, the design and manufacture of the smart structure with embedded optical fiber sensor would be solved scientifically in detail.. The microstructures, mechanical properties and the sensing abilities at the interface between the embedded optical fiber and the hosting structure would be studied accordingly. The integration mechanism in the smart structure would be explored. A micro-system would be developed to evaluate the interfacial combination. Subsequently, the relationship between the interfacial characteristics and the macro-performance of the structure would be established. Prospectively, by testing the interface around the optical fiber sensor, the structural performance under simple loading conditions could be predicated before the real structure serves. Therefore, an innovative research mentality could be proposed for analyzing the strength of the smart structures embedded with optical fiber sensor system. . The results would contribute to conducting the forming process of smart structures based on the optical fiber sensor. Moreover, the service life of the structure would be extended. Thereby, increasing utilization of optical fibers embedded inside large scaled aerospace structures, such as unmanned aerial vehicles and space stations would be expected.
项目提出从细观出发,以提升整体结构力学性能、光纤结构健康监测系统辨识精度为目标,研究石英光纤与复合材料基体结构界面一体化的实现方法与基本原理,实现埋入光纤传感系统与复合材料基体结构的界面相容,以期解决埋入式光纤智能复合材料结构设计及制作中的关键科学问题。. 本项目通过研究石英光纤与基体结构间界面微观结构、界面力学性能以及界面传感性能,探究两者实现完全界面相容一体化的机理,构建界面微观评估机制监测界面一体化程度,以建立简单载荷作用下结构宏观性能的微观预测原理为长远目标,探求微观界面性能与光纤智能材料结构宏观性能之间关联,为光纤智能材料结构宏观力学性能分析提供新的研究思路。. 研究成果可为以埋入光纤传感器为监测工具的智能复合材料结构的成型工艺提供依据,延长结构服役寿命,有助于促进埋入式光纤智能材料在诸如无人机、空间站等大型航空航天器结构中的应用。
为提高埋入式光纤智能材料结构的性能,从微细观出发,研究实现埋入光纤与智能材料基体结构之间界面一体化的方法。.首先,将光纤当作复合材料结构内置纤维,建立了光纤与主体结构界面细观模型。.其次,在界面力学模型的基础上,分析光纤与基体结构间的应变传递,研究了界面对光纤传感性能的影响。同时研究光纤传感器尺寸、涂覆层材料等不同参数对应变传感的影响,探讨光纤传感性能影响因素,并得出埋入光纤直径寸越小,光纤传感器上的平均应变传递率越大的结论。此外,通过设计试验,验证光纤光栅应变传递模型。.再次,建立光纤智能复合材料宏观力学性能研究力学模型以及设计验证试验,研究光纤与基体间形成的界面对整体结构力学性能的影响。在光光纤本身力学性能与主体结构力学性能相同情况下,影响结构力学性能因素有:(1)埋入光学本身尺寸;(2)光纤与主体结构间界面尺寸大小。有限元模拟分析及实验结果表明,若减小埋入光纤直径,有助于提高整体结构拉伸力学性能,因此采用小直径光纤制成光纤传感系统,可以实现提高埋入式光纤智能复合材料整体力学性能的目的。此外光纤与基体间形成的界面尺寸越小,制得的智能复合材料力学性能越高。.最后,采用微观力学实验方法,研究界面力学性能,研究结果表明,采用适当的界面处理方法,可以提高石英光纤与基体结构间的界面相容性,提高结构整体力学性能。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
智能金属结构光纤埋入方法及传感性能研究
光纤光栅埋入热喷涂涂层实现新型智能结构控制应用的研究
智能金属结构单模光纤宏弯温度传感原理及特性研究
光纤光栅传感元件、封装界面与基体损伤的长期耦合效应