Based on the study by material testing machine, split Hopkinson pressure bar(SHPB), light gas gun(LGG), triaxial rock material testing machine, scanning electronic microscope and optical microscope, damage evolution equation and dynamic constitutive relationship of high-gas and low-permeability coal bed at different direction and with different strain rate, which are caused by blasting, were established. The characteristics of damage evolution equation and dynamic constitutive relationship include microcrack propagation effect, crack slip effect, pressure-dependent plastic behaviors and effect caused by coupling of pressure-dependent plastic behaviors with micro-damage evolution. Aiming at shock wave recognition, elastic-plastic interface tracking and stress wave interaction at different material interface, the study is to improve and develop the theory of singular surface and characteristic theory of stress wave propagation. Combing advantages of characteristic theory, difference method and finite element method, Quasi-Characteristics Algorithm of generalized characteristic theory was obtained to improve high-precision algorithm and format, which improve the recognition accuracy of stress wave propagation and damage effect of coal bed..According to the established constitutive relationship of dynamic damage evolution, numerical method and field experiments, mechanism of damage evolution and cracks propagation in high-gas and low-permeability coal bed under blasting loads was investigated. Based on the investigation, mechanism of crack initiation, development and closure in damaged coal bed under blasting load, and principal controlling factors of crack propagation at different evolution stages were obtained. Reasonable application of the research results, permeability of coal bed can be increased and existing time of coal bed with high permeability state extended after blasting, which provides a scientific basis for maximum drainage of coal bed methane.
基于材料试验机、霍普金森压杆、轻气炮、岩石三轴材料实验机、扫描电镜和光学显微镜等实验研究,建立爆破扰动下高瓦斯低透气性煤体的损伤演化方程和不同方向、不同应变率下的动态本构关系,特征包括微裂纹扩展效应、裂纹滑移效应、压力相关塑性行为及其与微损伤演化间的耦合效应。以冲击波识别、弹塑性界面跟踪和材料交界面上波相互作用为目标,完善和发展波传播的奇异面理论和特征理论,将特征理论和差分及有限元方法各自优点相结合,建立广义特征理论的拟特征混合算法, 发展高精度算法和格式以提高应力波传播及损伤破坏效应的识别精度。.根据建立的动态损伤本构模型和数值方法结合现场试验对高瓦斯低透气性煤体在爆破扰动下的动态损伤演化机理进行系统研究,得出其在爆破载荷下损伤裂纹萌生、发展、闭合的演化机制及找出控制裂纹在各个阶段演化的主要因素。达到增加煤体透气性和延长煤体以高透气性状态存在的时间,为从煤体最大限度抽采瓦斯提供科学依据。
以淮南矿区气煤为研究对象,通过动静力学实验,获得两种煤在不同应变率条件下应力应变关系,构建包含应变率效应和损伤效应的、能够反映煤体的动静态力学性质的宽泛本构方程。揭示爆破扰动下高瓦斯低透气性煤体的动态损伤本构关系及应力波传播特征为瓦斯抽采提供依据。.(1)通过实测两种煤体在不同应变率条件下的动态应力应变曲线表明:煤体在初始阶段就表现出非线性;在低应变率条件下,煤体存在一定的塑性变形,当应变率提高时,煤体变形则表现出明显的应变率强化特性,试件很快达到极限应力。煤体在冲击载荷作用下的变形过程可概括为四个阶段:初始非线性阶段、屈服阶段、应变强化阶段和卸载破坏阶段。.(2)两种煤体的动态强度、峰值应变均随应变率的提高而指数增长,均具有显著的应变率依赖性,表明两种煤体均具有应变率强化的特点,对比两种煤体,实体煤的应变率强化特性更为显著,随应变率提高的幅值更大,说明实体煤比型煤具有更好的抵抗冲击载荷的能力。.(3)由DIF和DEIF随应变率的变化关系看出,两种煤体均存在较为显著的应变率强化特性,且在低应变率时二者的敏感性相似。但在高应变率条件下(转折点以后),实体煤的应变率强化特性更为明显,说明实体煤较型煤具有更好的抵抗冲击载荷的能力。.(4)根据空腔膨胀理论得到了含瓦斯煤在柱状装药爆破荷载作用下产生的空穴膨胀区、塑性区、弹性区的应力分布的解析表达式和破裂区、塑性区半径。煤体在爆炸荷载作用下的裂纹主要是由于压缩波和卸载波共同作用形成的,前期纹扩展主要是由于塑性剪切造成的,后期裂纹由于压缩波和卸载波复合作用形成的。.(5)以连续介质力学为基础建立了含瓦斯煤的拉压动态损伤本构模型并对含瓦斯煤柱状装药预裂爆破进行了模拟,实验与模型实验基本吻合。爆炸波在煤体近区传播过程中,径向波速是切向波速的1~2倍,且随着爆心距离的增加,此两者的波速差别在减小。在现场进行煤体预裂爆破过程中应充分考虑拉伸应力波形成裂纹的作用和主应力对裂纹发展的导向作用。.(6) 定向聚能药管爆破后,通过聚能射流的导向裂纹与后续高压气体形成的气楔联合作用达到了控制裂纹演化方向和长度的目的,实现了提高煤层透气性与保护围岩顶板有机的统一。通过潘三矿定向聚能爆破后实测数据可知,爆破后3个小时内抽采瓦斯量变化最为明显,其中最大抽采量是原始抽采量的470倍。有效抽采半径为7m以内,爆破后顶板振幅约为0.23cm,处于安全允范围。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
掘进工作面局部通风风筒悬挂位置的数值模拟
当归补血汤促进异体移植的肌卫星细胞存活
三级硅基填料的构筑及其对牙科复合树脂性能的影响
高地应力低透气性煤体爆炸荷载作用下的动态损伤演化及增透机理
球面发散应力波作用下花岗岩本构关系
低透气性高瓦斯煤层深孔预裂爆破渗透演化机制研究
深井分区破裂围岩在爆炸荷载下的含损伤动态本构模型及应力波传播规律