The sea floating photovoltaic power generation provides long-term and reliable power supply for distributed marine monitoring equipment, which plays a key role in national defense construction, safeguarding marine rights and early warning of marine disasters. It is difficult to achieve high-efficiency power generation at sea by existing photovoltaic power generation technology, which is based on static photovoltaic modules. The reason is that the sea floating photovoltaic power generation is based on the maximum power point tracking control process under random vibration of photovoltaic modules. If a clear mapping relationship can be established between the output frequency characteristics of photovoltaic modules and the control parameters of converter, the floating photovoltaic power generation technology will achieve a breakthrough. Therefore, based on the conversion mechanism of photovoltaic modules, a motion sensing calibration is established by means of inertial information. In order to obtain output frequency characteristics of photovoltaic modules, motion parameters are mapped to the modules model. And it provides conditions for the acquisition and calculation of converter parameters. Using the state space variable structure synovial control theory, the nonlinear dynamic equations of converter are constructed. Determining control objectives, building a switch function and adjusting the facet parameters, the goal of modules output stability control is achieved. By analyzing the control period relationship of the floating photovoltaic system, the dynamics output characteristic model is established, which is based on TLBO method. In order to achieve high-power energy extraction of floating photovoltaic power station, the parameters are optimized and the response band is also expanded. The research results of the project are expected to solve the bottleneck problem that the existing photovoltaic power generation technology is difficult to achieve high-power generation at sea.
浮动式光伏发电为分布式海洋监测装备提供长期可靠的供电,在国防建设、维护海洋权益及预警海洋灾害方面起到关键作用。受海水运动的影响,现有基于光伏组件静态下的发电技术难以实现海上高效率发电,原因在于海上光伏发电是基于组件随机振动下的最大功率点跟踪控制过程。如能将组件自身输出频率特征与接口电路控制参数之间存在的差异建立明确的映射关系,浮动式光伏发电技术将获得突破。为此,本项目基于组件转换机理引入惯性信息,建立运动感知联合定标模型,将运动参数映射到组件模型中,获取组件输出频率特征,为接口电路控制参数的获取与计算提供条件;建立接口电路状态方程,利用变结构滑膜控制,确定控制目标,构建切换函数,调整切面参数,达到组件输出稳定控制的目标;构建组件频率特征与最大功率点间映射关系,利用“教与学”算法,确定教学因子及跟踪周期,扩展响应频带。项目的研究成果有望解决现有光伏发电技术难以实现海上高功率发电的瓶颈问题。
浮动式光伏发电可为分布式海洋监测装备提供长期可靠的供电,在国防建设、维护海洋权益及预警海洋灾害方面起到关键作用。受海水运动的影响,现有基于光伏组件静态下的发电技术难以实现海上高效率发电,原因在于海上光伏发电是基于组件随机振动下的最大功率点跟踪控制过程。针对该问题,项目重点研究:1)基于多传感信息融合的浮动式光伏组件输出特性动态建模及特性分析,通过分析浮动式光伏发电系统在外界风力及波浪连续作用下所引起的组件运动状态与环境因素间的耦合关系,构建基于多传感器信息融合的浮动式光伏组件运动信息测量模型,并利用光伏组件单二极管模型及其参数与环境因素之间的耦合关系建立浮动式光伏组件动态模型,获得浮动式光伏组件动态输出特性,结果表明在运动状态下,组件最大功率点能量损耗普遍超过10%;2)基于多源异构信息融合的浮动式光伏组件输出功率耦合参数分析及主动控制方法,基于袋装随机森林权重算法建立光伏组件运动状态参数与输出最大功率点功率耦合关系;采用多变量曲线拟合方法构建光伏组件输出特性动态模型,以获取运动状态下光伏组件输出特性,构建自适应MPPT前馈主动跟踪控制,垂向加速度与最大功率点功率之间权重占比最大,达到71.2%;3)在获取光伏组件输出能量与振动耦合关系及接口电路控制周期的基础上,构建了基于Base-2函数的内嵌信息网络模型的能量提取方法,有效的加速了网络的计算速度,实现了光伏组件最大功率点的实时跟踪与控制,结果表明光伏组件输出功率可以提交3.7%以上。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
混合储能系统在光伏发电系统中应用控制方法研究
光伏发电系统组件热斑效应影响分析及其控制方法研究
光伏发电接入配电网故障机理与保护对策研究
基于多电平变换技术的光伏并网发电系统优化设计与控制