α″-Fe16N2 alloy materials without rare earth elements is potentially applicable to magnetic heads with excellent writability, nanocomposite magnets with high performance, and spintronic devices with high efficiency. This project is a foundational research which aims to solve the issue on controlling phase transformation and increasing MS value of α″-Fe16N2 based composite films. The scientific problems should be solved are: How to promote the transformation of α′-Fe8N phase to α″-Fe16N2 phase? How to increase the MS value of α″-Fe16N2 films? How to reveal the underlying mechanism for the tunability behaviors? In this project, series of interfacial tunability methods and interfacial characterization methods are proposed to solve the problems: ①Modifications of interfacial microstructures to tune the energy barrier for the phase transformation, such as large lattice strain or point defects; ②Tunability of electronic structures (the orbital hybridization between Fe3d and N2p electrons or charge distribution in the film) through physical methods (such as applying an external electric field) or chemical methods (such as the solid reactions at the interfaces). Based on these interfacial tunability, the effective manipulation on the phase transformation, Ms value, and thermal stability are expected. ③High resolution transmission electron microscopy and angle resolved X-ray photoelectron spectroscopy are supposed to characterize the interfacial crystal, magnetic, electronic structures of the films. Finally, based on the observed microstructures, the mechanism for the interfacial manipulations can be well explained by using first principal calculations.
无稀土元素的α″-Fe16N2合金材料在高性能永磁复合体、写入磁头和自旋电子学器件等方面都具有重要应用前景,本项目针对α″-Fe16N2薄膜材料在上述应用中存在的关键性问题—α′-Fe8N相向α″-Fe16N2相的转化率低、薄膜的Ms值不够高,拟开展相关的应用基础研究。解决的科学性问题是:如何促进α′-Fe8N相向α″-Fe16N2相的相变,并提高薄膜的Ms值?其调控机理是什么?本项目拟采用一系列界面调控方法和界面表征方法来解决上述问题:①从原子尺度上控制界面微结构,如引入大弹性应变作用、晶体缺陷等手段,调控相变能量势垒;②从电子尺度上控制Fe3d-N2p电子间的轨道杂化或电荷分布,如利用电场调控等物理手段、界面的固相反应等化学手段,调控薄膜的Ms值。③综合利用高分辨电子显微镜、角分辨X射线光电子能谱等界面表征手段,以及第一性原理计算的理论研究方法,阐明上述界面调控的重要机理。
本项目针对α″-Fe16N2薄膜材料在写入磁头、永磁合金以及铁磁电极等方面应用中存在的关键性问题—α′-Fe8N向α″-Fe16N2相的转化率低、薄膜的磁性能不高以及热稳定性差,开展了一系列基础性研究工作。在项目实施过程中,我们通过引入晶格应变、掺入杂质原子、电压调控等方法,有效调节FeN薄膜的相变能量势垒和合金溶解热,从而显著提升FeN薄膜的有序相变率和磁性能,并改善其热稳定性。另外,我们综合利用HRTEM、角分辨XPS、XLD等表征手段,研究了上述薄膜界面微观结构的变化,并结合第一性原理计算阐明了相变和性能调控的重要机理。相关研究成果已发表在15篇SCI论文中,包括Nat. Commun.(1篇)、Adv. Funct. Mater.(3篇)、ACS Appl. Mater. Interfaces(2篇)、Appl. Phys. Lett.(1篇)等。申请并授权发明专利3项,培养研究生12名。.. 具体研究成果如下:(1)利用FeN薄膜中的应变工程,有效调控N原子的间隙占位并降低FeN合金有序相变的能量势垒,进而显著提升Fe16N2薄膜的饱和磁化强度(Ms达到2.8T);(2)通过Co原子掺杂有效控制FeN薄膜中的溶解热,从而显著增加Fe16N2相的热稳定性(其热分解温度由200℃增加450℃),最终制备出磁性能可控、热稳定性良好的Fe16N2薄膜材料;(3)设计了Cr/FeN/MgO异质结构,通过N、O双离子协同调节Fe的电子配位,有效改变Fe的轨道占据并控制其轨道磁性,进而实现从面内到垂直磁各向异性的宽域调控;(4)构建了界面能带对称性匹配的FeN异质结构,并利用自旋-轨道力矩效应实现了FeN薄膜的电控磁化翻转,阐明了磁各向异性对磁化翻转效率的影响机理。上述研究结果为设计高性能的写入磁头、永磁合金以及铁磁电极等提供了重要的实验依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
自流式空气除尘系统管道中过饱和度分布特征
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
磁介水热复合的生长机理及其界面特征对性能的影响
铁磁半导体氧化物异质结薄膜的界面调控和性能表征
界面掺杂对FM/AFM薄膜性能影响的研究
铁电-铁磁多层复合薄膜中界面应力对结构和性能作用规律的研究