As far as possible to reduce the cost of use, people tend to make use of hot rolling aluminum alloy thin strip directly instead of cold rolling thin strip, and require it more and more thin for hot rolling. It also is required to use a more thin size of hot rolling aluminum alloy thin strip as the slab of following cold rolling process. That strip crown usually represents the characterization of hot rolled plate precision has not adapt to this demand, so strip shape of the hot rolling thin strip becomes hot problems, but almost all of aluminum strip hot rolling mills on domestic are no configuration of shape meter. The existing shape models were established using difference method or finite element method, with higher order and large amount of calculation, not convenient for the controller, and only considered the steady state rolling. They can not meet requirements of the plate-shape (strip-shape) dynamic prediction and real-time control in high-speed rolling conditions. In view of nonlinear, uncertainty and space-time coupling for strip rolling processes, they are essentially the complex infinite dimensional system described by nonlinear partial differential equations. Based on the foundation of a transverse thickness distribution model of hot rolling, using spectral method, the project mainly researches the foundation problems of coordination modeling of strip shape during hot rolling with cold rolling process of aluminum strip as: establishment of space-time coupling low order approximation model of hot rolled thin plate shape, construction of hot rolled thin sheet flatness intelligent modeling theory based on technology of time and space separation and identification method of nonlinear system, putting forward strip shape prediction method based on the low order approximation of intelligent model of space-time coupling, in a bid to achieve theoretic and practical positive results on these aspects of hot rolling aluminum thin sheet shape modeling, forecasting and setup, and so on.
为了尽可能降低使用成本,人们倾向直接使用热轧铝合金薄带材,而要求热轧板带材愈来愈薄。冷轧板也要求采用更薄的热轧板坯。用板凸度表征热轧板的精度已不适应这种要求,板形成为热轧突出的问题,但国内铝板带热轧都没有配置板形仪。现有板形模型主要采用差分法或有限元法建立,阶数高、计算量大,不便于控制器的实现,而且只考虑轧制的稳态,在高速热轧条件下,不能满足板形的动态预测与实时控制的要求。鉴于板带热轧过程存在非线性、不确定性和时空耦合,本质上为可用非线性偏微分方程描述的复杂无穷维系统,本项目以热轧横向板厚分布模型为基础,用谱方法主要研究铝板带热轧-冷轧过程协调板形建模的基础问题。建立热轧薄板板形时空耦合低阶近似模型,基于时空分离技术和非线性系统辨识方法构建了热轧薄板板形智能建模理论,提出基于时空耦合低阶近似智能模型的板形预测方法。力图在热轧铝薄板板形建模、预测及设定等方面获得理论上的和有实际意义的成果。
为降低使用成本倾向直接使用热轧铝合金薄带材,也要求热轧板带材愈来愈薄,但板形成为热突出的问题。铝板带热轧通常没有配置板形仪,在高速热轧条件下,为满足板形的动态预测与实时控制的要求,需要建立阶数低、计算量较小,便于控制器实现的板形模型。板带热轧过程中存在非线性、不确定性和时空耦合,本项目以热轧横向板厚分布模型为基础,结合热轧薄板工艺条件与热模拟压缩实验研究典型铝合金的流变特性,同时研究了基于轧制理论铝板带热轧-冷轧过程协调板形建模的基础问题和基于非线性系统辨识方法的板形建模理论。取得的成果如下:1)在分析轧制过程板形形成机理与影响机制基础上完成了热精轧工艺条件的铝合金变形抗力实验与建模,通过铝板带轧制过程静态和动态特性研究,确定了基于热轧薄工艺条件的热轧横向厚度分布与板形之间的关系;2)建立了包含不确定因素的热精轧板横向厚度分布时空耦合低阶近似模型,解决了现有板形模型阶数高、计算量大的问题;3)建立了热轧横向板厚分布与后续冷轧板形缺陷的遗传对应关系模型,基于非线性系统辨识的板形构建了薄板板形建模理论,运用数学建模与人工智能结合实现对轧制力、板形的预报。4)构建了协调板形模型分析仿真平台,并进行了初步验证。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
冷轧带钢预设定过程板形板厚耦合特性研究及协调优化
新型冷轧薄带板形电磁调控技术基础研究
多喷嘴喷射轧制高性能铝板带材的基础研究
不锈钢-碳钢层合板带冷轧复合、减薄冷轧和矫直过程的板形与界面力学行为