The function of immersion control system, a key component of the immersion lithography machine, is to generate a highly stable and ultra-clean slit fluid in a narrow gap between the last projection lens and the wafer. The behavior of micro-slit flow differs much from that of macro flow and appears more complex, which increasingly attracts concerns of different research interests. It is necessary to understand well the slit fluid behavior for the sake of building up a high-performance immersion unit. Inspired by biological sensory systems, this proposal focuses on the investigation of the immersion slit fluid by first developing a novel fluid sensor array with good hydraulic smooth, and then an innovative method to infer enough high space density pressure information so as to possibly evaluate stability degree of fluid in the gap. More specifically, sensory mechanism of the fish lateral line system, a fish sensory organ to fluid detection with high sensitivity and hydraulic smooth, will be investigated and applied to the novel sensory array design aiming at removing possible embedding interference to the slit flow. Effective models for pressure and shear stress measuring related to the novel sensory array will be then analyzed and developed. Additional biomimetic method, high space density information reconstruction from the limited sparse sensory array, will be then investigated and transferred into the slit flow measurement. Finally, the immersion micro slit fluid complexity will be dynamically investigated with the help of the developed novel sensory system and the biomimetic reconstruction method. The relationship between dynamic variations and control actions will be thus revealed so as to enlighten effective control strategies to maintain immersion slit fluid with enough stability. Due to the fact of the wide existence of slit flow, the developed method and sensory system can be useful to other fundamental research slit fluid scenarios and benefit to the development of high-performance fluid equipment.
浸没单元是浸没式光刻机关键部件,其功能是在投影物镜与硅片之间填充并维持高度洁净和稳定流动的微缝隙流体,提高光刻图案曝光精度。微缝隙流体具有明显的不同于宏观流动规律的复杂现象,探明浸没微缝隙流场的复杂流动行为是实现高性能浸没单元的前提条件。本项目以浸没单元微缝隙流场测量为对象,运用感知系统仿生研究方法,突破传感元件液力平滑限制,研制微缝隙流场测量传感系统,发展高密度流场测量新方法。具体包括:研究鱼类侧线系统高度液力平滑结构传感机制和高灵敏度流场信息感知机理,提出液力平滑的流场测量传感系统实现方法;建立传感阵列力学传导模型和剪切力测量模型;提出仿生感知的有限传感阵列微缝隙流场高密度检测方法;全面揭示浸没单元微缝隙流体流动规律,为浸没单元微缝隙流场稳定控制以及强扰动下流体密封控制,提供坚实的理论和实验依据。鉴于微缝隙流体的广泛性,本项目成果可以促进微缝隙流场基础研究,推动其他高端流体装备发展。
浸没单元是浸没式光刻机关键部件,其功能是在投影物镜与硅片之间填充并维持高度洁净和稳定流动的液体,提高光刻图案曝光精度。微缝隙流体具有明显的不同于宏观流动规律的复杂现象,探明浸没微缝隙流场的复杂流动行为是实现高性能浸没单元的前提条件。本项目以浸没单元微缝隙流场测量为对象,提出侵入式测量传感元件的液力平滑条件,研制微缝隙流场测量传感系统,发展高密度流场测量新方法。具体包括对引压孔结构中气液二相传压介质的传压效率进行误差分析并建立传导模型,研究气液两相流动特性及流致震动机理,提出能实现液力平滑条件的创新传感结构,完成浸没流场的高密度感知方法。全面揭示了浸没单元微缝隙流体流动规律,为浸没单元微缝隙流场稳定控制以及强扰动下流体密封控制,提供坚实的理论和实验依据。鉴于微缝隙流体的广泛性,本项目成果可以促进微缝隙流场基础研究,推动其他高端流体装备发展,为高精度流体测量提供切入点。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
近 40 年米兰绿洲农用地变化及其生态承载力研究
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
光场显微成像微尺度流动可视化及三维流场测量方法研究
浸没流场及纳米气泡对45纳米光刻分辩率的影响
浸没流场动态润湿行为与残留液渍控制的基础研究
多敏感场耦合多相流测量方法研究