Ferrocene derivatives have been extensively applied in composite solid propellants as burning rate catalysts due to their extraordinary high combustion catalytic activity. However, their easy migration and volatility during processing and storage have not been overcome yet and become a challenge in this field. This project will use cocrystal technique to resolve the problems existed in ferrocene-based burning rate catalysts based on our primary research results obtained previously. In terms of the intermolecular weak interactions between ferrocene derivatives and energetic compounds obtained by theoretical calculation, the molecular structure of each component, solvents, concentration and other factors affecting cocrystal growth are to be investigated and to get growth rule for the cocrystal compounds by solvent evaporation technique. The thermal stability, migration tendency and volatility rate of the cocrystals will be explored and their combustion catalytic activity will be evaluated, for elucidation of their structure-property relationship and for revealing the physicochemical nature and rules those effecting the combustion catalytic properties of the cocrystals. A possible combustion catalytic mechanism of the cocrystals will finally be investigated and analyzed preliminarily. The research results will resolve the easy migration and volatility problems existed in ferrocene-based burning rate catalysts and will improve the energy level of propellants with the incorporation of energetic materials. The research project will also provide a novel research direction and technical progress for long-time storage and steady combustion process of composite solid propellants.
二茂铁衍生物因其极高的燃烧催化活性,是复合固体推进剂中广泛应用的燃速催化剂,但它们易迁移易挥发等问题仍没有解决,是该领域的一大难题。本项目将立足于申请者前期的研究结果,提出采用共晶技术解决二茂铁类燃速催化剂存在的问题。结合二茂铁衍生物与作为共晶剂的含能化合物之间的分子间弱相互作用力理论计算结果,研究各组分的分子结构、溶剂、浓度等的影响条件,阐明溶剂挥发法生长此类共晶的生长规律;研究该类共晶化合物的热稳定性、迁移性、挥发性等物化性能,评价它们的燃烧催化活性,阐述其性能与结构间的构效关系,揭示影响该类共晶化合物燃烧催化性能的物理化学本质和规律,探索该类共晶的燃烧催化机理。该研究结果不仅能够解决二茂铁类燃速催化剂易迁移易挥发的问题,而且由于含能化合物的加入将会提高推进剂燃烧过程的能量水平。本研究将为复合固体推进剂的长期储存和稳定燃烧提供新的研究思路和方法基础。
针对二茂铁及其衍生物作为复合固体推进剂的燃速催化剂在实际应用过程中存在易挥发、易迁移等问题,本项目依据含能离子化合物的设计原理与合成策略,设计合成了以N,N-二甲氨基甲基二茂铁、二茂铁鎓离子、不同烷基链的单(双)核二茂铁季铵盐类碘(溴)化物和单(双)核二茂铁咪唑盐类碘化物为阳离子源,以富氮含能化合物为阴离子源,构建阴阳离子模块,从模块化角度设计合成了一系列二茂铁含能离子化合物。另外以实验室设计和合成的双核二茂铁化合物4-氨基-3,5-双(4-二茂铁基-1,2,3-三氮唑-1-甲基)-1,2,4-三氮唑和二茂铁甲基咪唑(1,2,4-三氮唑)和二茂铁三氮唑Schiff碱化合物为中性配体,与常见过渡金属离子(Mn2+, Fe2+, Cr3+, Co2+, Ni2+, Pb2+, Zn2+等)配位后作为阳离子源,以常用的富氮含能化合物为阴离子源,合成了一系列二茂铁唑类离子型富氮含能金属配合物。通过系统调控离子型二茂铁衍生物中取代基的结构、金属离子和富氮含能化合物的种类,研究了这些因素对化合物的热稳定性、挥发性和燃烧催化性能的影响,阐述了它们的构效关系;揭示了影响该类二茂铁衍生物燃烧催化性能的物理化学本质和规律;发现了一类潜在的二茂铁类燃速催化剂,为复合固体推进剂的长期储存和稳定燃烧提供了新的研究思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
高效、不迁移二茂铁衍生物燃速催化剂的研究
推进剂用可反应型二茂铁基聚合物燃速催化剂的合成、三维网络原位形成和抗迁移性能研究
高氮含能离子型二茂铁类燃速催化剂的设计、合成及其燃烧催化作用研究
二茂铁衍生物电化学性质和燃速催化性能的研究