在全球都在强调低碳经济和可持续性发展的大环境下,风能作为一种清洁的可再生能源得到了全世界的重视。但是大规模风电的存在给目前电网的管理带来前所未有的挑战,这主要体现在并网调度以及相应的规划上面。究其主要原因还是风能的随机性较大,从而导致风电厂发电总量具有很大的波动。本课题从风电的短期预测入手,以提高预测精度为目标,探索一种基于数据挖掘和传统数值方法相结合的预测模型。然后以该预测模型为前提,进而研究风电和其它传统发电厂(比如火电)之间的调度决策模型。该调度决策模型将运用随机规划的思想与预测模型有机地结合,从而大大降低调度风电时的不确定性风险和成本。本课题试图将风电预测模型的作用延伸到对风电厂早期规划上,提出相应的决策优化模型。例如风电厂往往会配套火电厂作为备份电厂,用于提高风电厂输出电力的可靠性。如果能够将风电预测模型应用到这类问题的规划,可能避免配套火电厂装机容量的过度冗余。
在风电预测方法创新方面,本研究发现风速具有结构性突变特征,即风速在短期内呈现出很强的不确定性,不能用一种随机分布模型来描述;与此同时,人们依据经验和历史数据,往往对于某个地区的风速有着先验知识。根据这些特点,我们自然联想到贝叶斯理论和时间序列的结构突变模型。因此我们将基于贝叶斯的结构突变模型应用到超短期风电预测,通过计算实验验证了该方法的有效性,为国内外风电预测同行们提供了崭新的思路。该项研究成果 "Very short-term wind speed forecasting with Bayesian structural break model" 发表在可再生能源方向国际一流期刊Renewable Energy (5-Year Impact Factor: 3.2)上面。..在风电厂调度研究方面,我们通过2011年度实地调研,以及和国内外学者交流,我们发现风电厂有时存在不得不停止某些风机从而降低发电量的现象。即风电调度不仅仅是和其它火电厂,或者其它可再生能源发电厂的调度调配问题。在一个风电厂内部,启停某些风机来达到发电量的严格要求也显得颇为重要。因此我们研究团队(包括香港和美国的合作者)提出了风电厂内部优化调度模型,帮助风电厂运营人员,根据风机发电效率、电价和天气状况作出启停风机的最优决策。该项研究成果弥补了国内外在这个方面的空白(目前大部分研究关注风电厂和其它传统电厂的电力调配、调度,忽略了风电厂内部也需要优化调度)。我们的研究成果“Scheduling Electric Power Production at a Wind Farm”发表在管理科学方向国际一流期刊European Journal of Operational Research(5-Year Impact Factor: 2.3)上面。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于SSVEP 直接脑控机器人方向和速度研究
面向云工作流安全的任务调度方法
物联网中区块链技术的应用与挑战
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
大规模风电并网系统洁净经济优化调度研究
风电并网电力系统经济调度中风电场出力的短期预测模型
分频风电系统及其并网优化控制研究
大规模风电并网中的异常值检测与预测研究