Nowadays, an ultra-sensitive and feasible method for detecting and quantifying biomarkers is important in biological studies, clinical diagnostics and treatment. Typically, the assay is performed using certain affinity ligands comprising aptamers and antibodies that specifically interact with the biomolecules and thus mediate a target-responsive signal transduction cascade. Recently, great attention has been focused on design and application of nano- and micro-biosensors by using simple and low-cost sensing strategies. One major merit of using nanomaterials is that one can control and tailor their properties in a very predictable manner to meet the needs of specific applications. For example, nanomaterials can provide unique chemical and physical properties (in comparison with bulk materials) enabling new and advanced functions such as good biocompatibility, high surface-to-volume ratio, and unique optical properties. Recent research has looked to develop innovative and powerful novel real-time, on-line and micro-array detection strategies. In this project, our motivation is to explore novel methods and strategies for the advanced development of immunoassays on the basis of novel signal-generation principles for the detection of biomarkers, by coupling with enzyme labels, nano labels and portable recognition elements. Briefly, this project mainly consists of the following concerns: (i) to exploit the pH meter-based immunosensing protocols by using nucleic acids and nano labels as the signal-amplification strategies, (ii) to set up barometer-based immunoassay methods by utilizing bioactive enzymes to generate the gas during the measurement, (iii) to design the glucose meter-based immunoassays through the etching of the enzymatic product (H2O2) toward nanosilver particles on the nanosilver-gated macro-porous nanomaterials encapsulated with glucose molecules, (iv) to construct novel digital meter-based immunosensing systems by coupling with the classical peroxyoxalate chemiluminescence self-illuminated system integrating into the capacitor/digital meter-joined circuit for the photocurrent generation in the presence of hydrogen peroxide (H2O2, as the hole-trapping reagent), and (v) to fabricate novel visible immunoassays by using gold nanocags as the recognition element, accompanying the formation of gold-silver nanocags during the enzyme-based immunoreaction.
纳米及微纳结构生物传感的设计和应用已成为免疫分析研究的热点,简单、低廉的传感策略已成为生命分析化学发展的主流,并逐渐向实时-在线、微阵列方向发展。本项目拟借鉴酶及纳米标记在免疫分析中信号放大能效,结合便携式检测器件,构建新型信号读出装置免疫分析新方法和新技术,实现对肿瘤标志物快速、灵敏的检测。具体内容:(1) 建立以pH计为读出器件、核酸及纳米标记为信号放大免疫分析新方法;(2) 利用酶对底物催化产生气体,建立以气压计为检测手段免疫分析新技术;(3) 以纳米银-多孔材料装载葡萄糖为信号源,利用酶产物-H2O2对纳米银的刻蚀作用,建立以血糖仪为检测手段免疫分析新策略;(4) 利用酶产物-H2O2与草酸酯自发光体系,激发光敏材料产生光电流,结合电容器瞬时充放电性能,建立以万用表为检测手段免疫分析新技术;(5) 以金纳米笼为信号源,利用酶对底物催化产生新金银纳米笼,建立新型可视化免疫分析新模式。
纳米生物技术是纳米技术与生物技术交叉渗透形成的新技术,是纳米技术的重要组成部分,也是将来生物医学领域中的一个重要发展方向。本项目利用纳米生物标记技术与商业化便携式检测器件相结合,构建简单、低廉的免疫分析新方法和新技术,实现对肿瘤标志物的灵敏、快速检测。主要研究内容:(1)以《电位仪》作为检测器件,利用纳米金标记抗体和单链DNA作为信号来源,建立以聚DNA和纳米金标记作为信号放大策略的夹心型电位免疫传感器;(2)以《气压计》作为检测手段,将免疫识别、纳米酶催化和柔性压力传感器相结合,构建以柔性压力传感器为信号读出装置的便携式气压型免疫分析新方法;(3)利用介孔二氧化硅纳米材料具有高度有序的孔道结构、大的比表面积和良好的生物相容性,建立基于核酸适配体封闭介孔二氧化硅葡萄糖控制释放体系的免疫传感新策略;(4)利用铂标记颗粒催化过氧化氢分解生成氧气,导致纸基电极发生形变,降低了柔性压力传感器的电阻,建立以《万用表》作为读出器件的免疫分析新技术;(5)以《照相机》作为检测手段,利用具有{hk0}高指数晶面裸露的内凹铂纳米立方体标记的信标抗体,建立基于铂纳米笼为信号源的比色免疫分析方法。本项目的研究成果将在蛋白质组学研究、临床疾病的诊断、环境分析、食品安全分析等与人类健康和公共安全密切相关的科学领域发挥重大的作用,具有广泛的应用前景和潜在的巨大经济效益。. 在本项目资助下,已在国际核心期刊上发表研究论文近50多篇,与该课题密切相关的研究论文16篇 (其中影响因子大于5的有11 篇,6篇论文列为高被引论文,1篇论文入选“2018年度中国百篇最具影响力的国际学术论文”);申请发明专利9件,授权发明专利5件;培养博士研究生8名,硕士研究生4名,其中5名博士研究生和5名硕士研究生获国家奖学金,1名硕士生获福建省优秀硕士学位论文,并邀请多名国内外知名专家教授来校讲学和学术交流。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
DNA分子机器的构建及其在肿瘤标志物检测中的应用研究
生物条形码模式电化学发光免疫分析及其超高灵敏检测肿瘤标志物的应用研究
光活性纳米材料模拟氧化酶的构建及其在肿瘤标志物检测中的应用
基于AuNPs@MoS2纳米探针的构建及其在肿瘤标志物检测中的应用研究